Mostrar el registro sencillo del ítem

dc.contributor.authorLuna-Del Risco M
dc.contributor.authorVásquez A.J
dc.contributor.authorZea Fernández J.S
dc.contributor.authorMarín E
dc.contributor.authorGonzález C.A
dc.contributor.authorVargas A.C
dc.contributor.authorMejías Brizuela N.Y.
dc.date.accessioned2023-10-24T19:24:49Z
dc.date.available2023-10-24T19:24:49Z
dc.date.created2022
dc.identifier.issn1406894X
dc.identifier.urihttp://hdl.handle.net/11407/8003
dc.description.abstractIn developing countries, residual biomass usage by means of anaerobic digestion offers several benefits and opportunities, such as a sustainable energy source, production of organic fertilizers and new agrobusiness models. In Latin America, Colombia is one of the most promising markets for the implementation of this technology in terms of availability of biomass and economic growth, as recently reported by local government organizations. In this paper, special attention is given to Antioquia, a department of Colombia with the largest farms of cattle and pigs, according to information reported in 2018 by the Ministry of Agriculture and Rural Development. It is estimated that manure from the porcine subsector in Antioquia has an approximate technical-energy potential of 1,896 TJ year-1, varying from 1,611 to 2,186 TJ year-1, corresponding to the 95% confidence interval. In the case of manure generated by the livestock subsector in Antioquia, it is estimated a theoretical energy potential of 8,566 TJ year-1. However, traditional extensive production systems disseminate manure through the pastures turning centralization of the available residual biomass a difficult task and not senseful. Based on the local practices of the specialized dairy subsector, it is estimated that manure collected during the milking process could reached up to 25% of the total available. Biochemical conversion of this amount of biomass has an estimated technical-energy potential of 187 TJ year-1, varying from 156 and 236 TJ year-1, corresponding to the 95% confidence. The aim of this article is to estimate the technical-energy potential for the livestock and porcine subsectors in the Department of Antioquia, based on the available residual biomass according to local farming practices. © 2022, Eesti Pollumajandusulikool. All rights reserved.eng
dc.language.isoeng
dc.publisherEesti Pollumajandusulikool
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133648554&doi=10.15159%2fAR.22.029&partnerID=40&md5=0a99234e888c034a3ef0ffe8e0575388
dc.sourceAgron. Res.
dc.sourceAgronomy Researcheng
dc.subjectEnergy matrixeng
dc.subjectPorcine manureeng
dc.subjectResidual biomass availabilityeng
dc.subjectResidual livestock biomasseng
dc.subjectTechnical biogas potentialeng
dc.titleBiogas production from the specialized dairy farming and porcine subsectors in Antioquia, Colombia: Theoretical and technical-energy potential approacheng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.type.spaArtículo
dc.identifier.doi10.15159/AR.22.029
dc.relation.citationvolume20
dc.relation.citationissue2
dc.relation.citationstartpage281
dc.relation.citationendpage301
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationLuna-Del Risco, M., Universidad de Medellin, Faculty of Engineering, Carrera 87 # 30 - 65, Medellín, 050030, Colombia
dc.affiliationVásquez, A.J., Universidad de Medellin, Faculty of Engineering, Carrera 87 # 30 - 65, Medellín, 050030, Colombia
dc.affiliationZea Fernández, J.S., Universidad de Medellin, Faculty of Engineering, Carrera 87 # 30 - 65, Medellín, 050030, Colombia
dc.affiliationMarín, E., Universidad de Medellin, Faculty of Engineering, Carrera 87 # 30 - 65, Medellín, 050030, Colombia
dc.affiliationGonzález, C.A., Universidad de Medellin, Faculty of Engineering, Carrera 87 # 30 - 65, Medellín, 050030, Colombia
dc.affiliationVargas, A.C., Instituto Tecnológico Metropolitano de Medellín, Faculty of Engineering, Calle 73 No. 76A-354 vía el Volador, Medellín, 050034, Colombia
dc.affiliationMejías Brizuela, N.Y., Universidad Politécnica de Sinaloa, Energy Engineering Department, Carretera libre Mazatlán-Higuera Km 3 C.P, Sinaloa, 82199, Mexico
dc.relation.referencesAndré, L., Zdanevitch, I., Pineau, C, Lencauchez, J., Damiano, A., Pauss, A., Ribeiro, T., Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale (2019) Bioresource Technology, 289, p. 121737. , https://doi.Org/10.1016/j.biortech.2019.121737, (July)
dc.relation.referencesArango Osorio, S., Vasco Echeverri, O., López Jiménez, G., González Sanchez, J., Millán, I.I., Methodology for the design and economic assessment of anaerobic digestion plants to produce energy and biofertilizer from livestock waste (2019) Science of the Total Environment, 685, pp. 1169-1180
dc.relation.referencesContreras, M.D., Sequeda Barros, R., Zapata, J., Vanegas Chamorro, M., Albis Arrieta, A., (2020) A Look to the Biogas Generation from Organic, p. 4553
dc.relation.references(2016) Resolución 240 - Normas aplicables al servicio public domiciliario de gas combustible con biogás y biometano, , http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/dafe4d4fc83940e2052580bf005b67d0/$FILE/Creg240-2016.pdf, December 6. 2016
dc.relation.references(2016) Anuario Estadístico de Antioquia, , https://www.antioquiadatos.gov.co/index.php/13-10-4-cobertura-de-Ingeniería en Energía-en-los-municipios-de-antioquia-ano-2016, Reporte
dc.relation.referencesGalvis Pinzón, D.P., Acevedo León, M.L., (2008) Evaluation of the energy potential of residual biomass from the porcine sector in Colombia, p. 83. , Universidad Industrial de Santander, (in Spanish)
dc.relation.referencesHerrero Garcia, N., Mattioli, A., Gil, A., Frison, N., Battista, F., Bolzonella, D., Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas (2019) Renewable and Sustainable Energy Reviews, 112, pp. 1-10
dc.relation.referencesHollas, C.E., Bolsan, A.C., Chini, A., Venturin, B., Bonassa, G., Cándido, D., Antes, F.G., Kunz, A., Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach (2021) Renewable and Sustainable Energy Reviews, 150, p. 111472. , https://doi.org/10.1016/J.RSER.2021.111472
dc.relation.references(2020) Renewable Energy Statistics: Colombian Energy Profile, , Report
dc.relation.referencesCabeza, I., Thomas, M.T., Vásquez, A.V., Acevedo, P., Hernández, M., Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment (2016) Chemical Engineering Transactions, 49, pp. 385-390
dc.relation.referencesJiménez Vásquez, A. F., (2021) Atlas del potencial técnico-energético aprovechable por digestión anaerobia de la biomasa residual pecuaria para los subsectores porcícola y ganadería de leche especializada en el Departamento de Antioquia, , https://repository.udem.edu.co/handle/11407/6604
dc.relation.referencesKall, K., Roosmaa, Ü., Viiralt, R., Assessment of the economic value of cattle slurry and biogas digestate used on grassland | Request PDF (2016) Agronomy Research, 14, pp. 54-66. , https://www.researchgate.net/publication/303787394_Assessment_of_the_economic_value_of_cattle_slurry_and_biogas_digestate_used_on_grassland
dc.relation.referencesKomasilovs, V., Bumanis, N., Kviesis, A., Anhorn, J., Zacepins, A., Development of the digital matchmaking platform for international cooperation in the biogas sector (2021) Agronomy Research, 19 (1), pp. 809-818. , https://doi.org/10.15159/AR.21.018, (Special)
dc.relation.referencesKrishna Kafle, G., Chen, L., Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models (2016) Waste Management, 48, pp. 492-502. , https://doi.org/https://doi.org/10.1016/j.wasman.2015.10.021
dc.relation.referencesLi, J., Jha, A.K., Bajracharya, T.R., Dry anaerobic co-digestion of cow dung with pig manure for methane production (2014) Applied Biochemistry and Biotechnology, 173 (6), pp. 1537-1552. , https://doi.org/10.1007/s12010-014-0941-z
dc.relation.referencesLiang, Y. gan, Li, X. juan, Zhang, J., Zhang, L. gan, Cheng, B., Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure (2017) Environmental Science and Pollution Research, 24 (13), pp. 12328-12337. , https://doi.org/10.1007/s11356-017-8832-9
dc.relation.referencesLiang, Y. gan, Xu, L., Bao, J., Firmin, K.A., Zong, W., Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community (2020) Renewable Energy, 145, pp. 222-232. , https://doi.org/10.10167j.renene.2019.06.037
dc.relation.referencesLondoño, A.T., Jaramillo, C.A.P., Hernández, R.Z., Evaluation of the methanogenic biochemical potential of the pork porcine precursor in the North of Antioquia (2017) Journal of Engineering and Technology, 6 (1), pp. 44-54
dc.relation.referencesLondoño Pineda, A.A., Rojas, Vélez, Jonathan, M.P., Sujitha, S.B., Evaluation of climate change adaptation in the energy generation sector in Colombia via a composite index - A monitoring tool for government policies and actions (2019) Journal of Environmental Management, 250, p. 109453. , https://doi.org/10.1016/J.JENVMAN.2019.109453, (Oscar), O.A
dc.relation.referencesLuna-DelRisco, M., Normak, A., OrupSld, K., Biochemical methane potential of different organic wastes and Biochemical methane potential of different organic wastes and energy crops from Estonia energy crops from Estonia (2011) Agronomy Research, 9, pp. 331-342
dc.relation.referencesMarrugo, G., Valdés, C.F., Chejne, F., Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources (2016) Energy and Fuels, 30 (10), pp. 8386-8398. , https://doi.org/10.1021/ACS.ENERGYFUELS.6B01596
dc.relation.referencesMartí Herrero, J., (2008) Design guide and installation manual for family biodigesters, , https://doi.org/10.13140/RG.2.1.1048.6242, Publisher: GIZ. (in Spanish)
dc.relation.referencesMcVoitte, W.P.A., Clark, O.G., The effects of temperature and duration of thermal pretreatment on the solid-state anaerobic digestion of dairy cow manure (2019) Heliyon, 5 (7), p. e02140. , https://doi.org/10.1016Zj.heliyon.2019.e02140
dc.relation.references(2018) Management Report 2018, pp. 1-171. , Https://www.minagricultura.gov.co/planeacion-control-gestion/Gestin/PLANEACION/Informe_de_Gesti%C3%B3n_(Metas_Objetivos_Indicadores_Gestion)/INFORME%20DE%20%20GESTION%202018.pdf, MinAgricultura. Report, (in Spanish)
dc.relation.references(2020) Agricultural Evaluations - Municipal Agricultural Evaluations and Statistical Yearbook of the Agricultural Sector, , Https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=59, Ministerio de Agricultura. Report, (in Spanish)
dc.relation.referencesPham, C.H., Saggar, S., Vu, C.C., Tate, K.R., Tran, T.T.T., Luu, T.T., Ha, H.T., Sommer, S. G., Biogas production from steer manures in Vietnam: Effects of feed supplements and tannin contents (2017) Waste Management, 69, pp. 492-497. , https://doi.org/10.1016/j.wasman.2017.08.002
dc.relation.referencesPupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., Pourkashanian, M., Large scale integration of renewable energy sources (RES) in the future Colombian energy system (2019) Energy, 186, p. 115805. , https://doi.org/10.1016/j.energy.2019.07.135
dc.relation.referencesRamirez-Contreras, N.E., Faaij, A.P.C., A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia (2018) Renewable and Sustainable Energy Reviews, 96, pp. 460-478. , https://doi.org/10.1016/J.RSER.2018.08.001
dc.relation.referencesRamírez Balaguera, L.F., Barrera Ojeda, D.F., (2017) Potencial energético de la biomasa residual pecuaria del departamento de Cundinamarca - Colombia, , Https://repository.udistrital.edu.co/handle/11349/5178, Universidad Distrital Francisco José de Caldas. PhD Thesis
dc.relation.referencesRios, G.P., Botero, S., An Integrated Indicator to Analyze Sustainability in Specialized Dairy Farms in Antioquia-Colombia (2020) Sustainability 2020, 12 (22), p. 9595. , https://doi.org/10.3390/SU12229595
dc.relation.referencesSagastume Gutiérrez, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C., The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia (2020) Journal of Cleaner Production, 269, p. 122317. , https://doi.org/10.1016/JJCLEPRO.2020.122317
dc.relation.referencesUPME, I., (2011) Atlas del potencial energético de la biomasa residual en Colombia
dc.relation.references(2021) Proyección Demanda Ingeniería en Energía Eléctrica y Gas Natural 2021-2035, , https://www1.upme.gov.co/DemandayEficiencia/Documents/UPME_Proyeccion_Demanda_Ingeniería en Energía_Junio_2021.pdf, June 6. Reporte
dc.relation.referencesWang, Y., Li, G., Chi, M., Sun, Y., Zhang, J., Jiang, S., Cui, Z., Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion (2018) Bioresource Technology, 250, pp. 328-336. , https://doi.org/10.1016/j.biortech.2017.11.055, (September 2017)
dc.relation.referencesWang, X., Li, Z., Cheng, S., Ji, H., Shi, J., Yang, H., Multiple Substrates Anaerobic Co-Digestion: A Farm-Scale Biogas Project and the GHG Emission Reduction Assessment (2021) Waste and Biomass Valorization, 12 (4), pp. 2049-2057. , https://doi.org/10.1007/S12649-020-01166-3/FIGURES/4
dc.relation.referencesXiao, Y., Yang, H., Yang, H., Wang, H., Zheng, D., Liu, Y., Pu, X., Deng, L., Improved biogas production of dry anaerobic digestion of swine manure (2019) Bioresource Technology, 294, p. 122188. , https://doi.org/10.1016/j.biortech.2019.122188, (August)
dc.relation.referencesYang, J., Wang, D., Luo, Z., Zeng, W., Influence of reflux ratio on the anaerobic digestion of pig manure in leach beds coupled with continuous stirred tank reactors (2019) Waste Management, 91, pp. 115-122. , https://doi.org/10.10167j.wasman.2019.08.005
dc.relation.referencesZhang, J., Lu, T., Wang, Z., Wang, Y., Zhong, H., Shen, P., Wei, Y., Effects of magnetite on anaerobic digestion of swine manure: Attention to methane production and fate of antibiotic resistance genes (2019) Bioresource Technology, 291. , (121847)
dc.relation.referencesZhang, W., Lang, Q., Wu, S., Li, W., Bah, H., Dong, R., Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China (2014) Bioresource Technology, 156, pp. 63-69. , https://doi.org/10.1016/j.biortech.2014.01.013
dc.relation.referencesZhao, Y., Sun, F., Yu, J., Cai, Y., Luo, X., Cui, Z., Hu, Y., Wang, X., Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation (2018) Bioresource Technology, 269, pp. 143-152. , https://doi.org/10.1016/j.biortech.2018.08.040, (July)
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem