Mostrar el registro sencillo del ítem

dc.contributor.authorTobón D.P
dc.contributor.authorV, Hossain M.S
dc.contributor.authorMuhammad G
dc.contributor.authorBilbao J
dc.contributor.authorSaddik A.E.
dc.date.accessioned2023-10-24T19:24:56Z
dc.date.available2023-10-24T19:24:56Z
dc.date.created2022
dc.identifier.issn9424962
dc.identifier.urihttp://hdl.handle.net/11407/8019
dc.description.abstractThe increase in chronic diseases has affected the countries’ health system and economy. With the recent COVID-19 virus, humanity has experienced a great challenge, which has led to make efforts to detect it and prevent its spread. Hence, it is necessary to develop new solutions that are based on technology and low cost, to satisfy the citizens’ needs. Deep learning techniques is a technological solution that has been used in healthcare lately. Nowadays, with the increase in chips processing capabilities, increase size of data, and the progress in deep learning research, healthcare applications have been proposed to provide citizens’ health needs. In addition, a big amount of data is generated every day. Development in Internet of Things, gadgets, and phones has allowed the access to multimedia data. Data such as images, video, audio and text are used as input of applications based on deep learning methods to support healthcare system to diagnose, predict, or treat patients. This review pretends to give an overview of proposed healthcare solutions based on deep learning techniques using multimedia data. We show the use of deep learning in healthcare, explain the different types of multimedia data, show some relevant deep learning multimedia applications in healthcare, and highlight some challenges in this research area. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85130972021&doi=10.1007%2fs00530-022-00948-0&partnerID=40&md5=8be843f849f9658afcd679101592d597
dc.sourceMultimedia Syst
dc.sourceMultimedia Systemseng
dc.subjectChronic diseaseeng
dc.subjectCOVID-19eng
dc.subjectDeep learningeng
dc.subjectHealthcareeng
dc.subjectMonomediaeng
dc.subjectMultimediaeng
dc.subjectMultimodaleng
dc.titleDeep learning in multimedia healthcare applications: a revieweng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaArtículo
dc.identifier.doi10.1007/s00530-022-00948-0
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationTobón, D.P., V, Department of Telecommunications Engineering, Universidad de Medellín, Medellín, Colombia
dc.affiliationHossain, M.S., Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia
dc.affiliationMuhammad, G., Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia
dc.affiliationBilbao, J., Head of Research Department - ICT (IoT Digital Platforms, Data Analytics & Artificial Intelligence) IKERLAN, Arrasate, Spain
dc.affiliationSaddik, A.E., Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates, University of Ottawa, Ottawa, Canada
dc.relation.referencesOrganization, W.H., World Health Organization, , https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases, Online]. Available, Accessed 4 December 2020
dc.relation.referencesYach, D., Hawkes, C., Gould, C.L., Hofman, K.J., The global burden of chronic diseases: overcoming impediments to prevention and control (2004) J. Amer. Med. Assoc., 291 (21), pp. 2616-2622
dc.relation.referencesOrganization, W.H., Accessed 4 December 2020
dc.relation.referencesKashifNaseer, Q., Self-assessment and deep learning-based coronavirus detection and medical diagnosis systems for healthcare (2021) Multimed Syst
dc.relation.referencesOrganization, W.H.,
dc.relation.referencesAlhussein, M., Muhammad, G., Voice pathology detection using deep learning on mobile healthcare framework (2018) IEEE Access, 6, pp. 41034-41041
dc.relation.referencesAlhussein, M., Muhammad, G., Automatic voice pathology monitoring using parallel deep models for smart healthcare (2019) IEEE Access, 7, pp. 46474-46479
dc.relation.referencesTobón, D.P., Falk, T.H., Maier, M., Context awareness in WBANs: a survey on medical and non-medical applications (2013) IEEE Wirel. Commun., 20 (4), pp. 30-37
dc.relation.referencesDai, Y., Wang, G., Muhammad, K., Liu, S., A closed-loop healthcare processing approach based on deep reinforcement learning (2022) Multimed. Tools Appl., 81, pp. 3107-3129
dc.relation.referencesAnwer, D.N., Ozbay, S., Lung Cancer Classification and Detection Using Convolutional Neural Networks (2020) Proceedings of the 6Th International Conference on Engineering & MIS
dc.relation.referencesSieverdes, J.C., Treiber, F., Jenkins, C., Hermayer, K., Improving diabetes management with mobile health technology (2013) Am. J. Med. Sci., 345 (4), pp. 289-295
dc.relation.referencesKirwan, M., Vandelanotte, C., Fenning, A., Duncan, M.J., Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial (2013) J. Med. Internet Res., 15 (11)
dc.relation.referencesMaamar, H.R., Boukerche, A., Petriu, E.M., 3-D streaming supplying partner protocols for mobile collaborative exergaming for health (2012) IEEE Trans. Inf. Technol. Biomed., 16 (6), pp. 1079-1095
dc.relation.referencesZhang, Y., Qiu, M., Tsai, C.W., Hassan, M.M., Alamri, A., Health-CPS: healthcare cyber-physical system assisted by cloud and big data (2017) IEEE Syst. J., 11 (1), pp. 88-95
dc.relation.referencesMartínez-Pérez, B., de la la TorreDíez, I., López-Coronado, M., Herreros-González, J., Mobile apps in cardiology: review (2013) JMIR Mhealth Uhealth, 1 (2)
dc.relation.referencesBisio, I., Lavagetto, F., Marchese, M., Sciarrone, A., A smartphone centric platform for remote health monitoring of heart failure (2014) Int. J. Commun. Syst., 28 (11), pp. 1753-1771
dc.relation.referencesFayn, J., Rubel, P., Toward a personal health society in cardiology (2010) IEEE Trans. Inf. Technol. Biomed., 14 (2), pp. 401-409
dc.relation.referencesFontecha, J., Hervás, R., Bravo, J., Navarro, J.F., A mobile and ubiquitous approach for supporting frailty assessment in elderly people (2013) J. Med. Internet. Res., 15 (9)
dc.relation.referencesChiarini, G., Ray, P., Akter, S., Masella, C., Ganz, A., mhealth technologies for chronic diseases and elders: a systematic review (2013) IEEE J. Sel. Areas Commun., 31 (9), pp. 6-18
dc.relation.referencesGao, Y., Xiang, X., Xiong, N., Huang, B., Lee, H.J., Alrifai, R., Jiang, X., Fang, Z., Human action monitoring for healthcare based on deep learning (2018) IEEE Access, 6, pp. 52277-52285
dc.relation.referencesZhou, X., Liang, W., Wang, K.I.-K., Wang, H., Yang, L.T., Jin, Q., Deep-learning-enhanced human activity recognition for internet of healthcare things (2020) IEEE Internet Things J., 7 (7), pp. 6429-6438
dc.relation.referencesMartinez-Murcia, F.J., Ortiz, A., Gorriz, J.-M., Ramirez, J., Castillo-Barnes, D., Studying the manifold structure of Alzheimer's disease: a deep learning approach using convolutional autoencoders (2020) IEEE J. Biomed. Health Inf., 24 (1), pp. 17-26
dc.relation.referencesWu, C., Luo, C., Xiong, N., Zhang, W., Kim, T.-H., A greedy deep learning method for medical disease analysis (2018) IEEE Access, 6, pp. 20021-20030
dc.relation.referencesDijcks, J.P., (2012) Oracle: Big Data for the Enterprise, , http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf, Online]. Available, Accessed 1 December 2020
dc.relation.referencesPouyanfar, S., Yang, Y., Chen, S.-C., Shyu, M.-L., Iyengar, S.S., Multimedia Big data analytics: a survey (2018) ACM Comput. Surv., 51 (1), pp. 1-34
dc.relation.referencesHalvorsen, P., Riegler, M.A., Schoeffmann, K., Medical Multimedia Systems and Applications (2019) 27Th ACM International Conference on Multimedia
dc.relation.referencesHiriyannaiah, S., Akanksh, B.S., Koushik, A.S., Siddesh, G.M., Srinivasa, K.G.: “Deep learning for multimedia data in IoT.” Multimed. Big Data Comput (2019) Iot Appl, pp. 101-129
dc.relation.referencesGumaei, A., Hassan, M.M., Alelaiwi, A., Alsalman, H., A hybrid deep learning model for human activity recognition using multimodal body sensing data (2019) IEEE Access, 7, pp. 99152-99160
dc.relation.referencesChen, S.-C., Multimedia deep learning (2019) IEEE Multimed, 26 (1), pp. 5-7
dc.relation.referencesJu, R., Hu, C., Zhou, P., Li, Q., Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning (2017) IEEE/ACM Trans. Comput. Biol. Bioinf., 16 (1), pp. 244-257
dc.relation.referencesMuhammed, T., Mehmood, R., Albeshri, A., Katib, I., UbeHealth: a personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities (2018) IEEE Access, 6, pp. 32258-32285
dc.relation.referencesSierra-Sosa, D., Garcia-Zapirain, B., Castillo, C., Oleagordia, I., Nuño-Solinis, R., Urtaran-Laresgoiti, M., Elmaghraby, A., Scalable healthcare assessment for diabetic patients using deep learning on multiple GPUs (2019) IEEE Trans. Ind. Inf., 15 (10), pp. 5682-5689
dc.relation.referencesAderghal, K., Benois-Pineau, J., Afdel, K., Gwenaëlle, C., FuseMe: Classification of sMRI images by fusion of Deep CNNs in 2D+ε projections (2017) 15Th International Workshop on Content-Based Multimedia Indexing
dc.relation.referencesShan, F., Gao, Y., Wang, J., Shi, W., Shi, N., Hanal, M.E., (2020) Lung Infection Quantification of COVID-19 in CT Images with Deep Learning
dc.relation.referencesLi, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT (2020) Radiology, 296 (2), pp. 65-67
dc.relation.referencesSong, Y., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images (2020) IEEE/ACM Trans. Comput. Biol. and Bioinf., 18 (6), pp. 2775-2780
dc.relation.referencesHu, S., Gao, Y., Niu, Z., Jiang, Y., Li, L., Xiao, X., Wang, M., Ye, H., Weakly supervised deep learning for COVID-19 infection detection and classification from CT images (2020) IEEE Access, 8, pp. 118869-118883
dc.relation.referencesShankar, K., Eswaran, P., Prayag, T., Deep learning and evolutionary intelligence with fusion-based feature extraction for detection of COVID-19 from chest X-ray images (2021) Multimedia Systems
dc.relation.referencesYazhini, K., Loganathan, D., A state of art approaches on deep learning models in healthcare: An application perspective (2019) 3Rd International Conference on Trends in Electronics and Informatics (ICOEI), , India
dc.relation.referencesYu, Y., Li, M., Liu, L., Li, Y., Wang, J., Clinical big data and deep learning: applications, challenges, and future outlooks (2019) Big Data Min. Anal., 2 (4), pp. 288-305
dc.relation.referencesHung, C.Y., Lin, C.H., Chang, C.S., Li, J.L., Lee, C.C., Predicting gastrointestinal bleeding events from multimodal in-hospital electronic health records using deep fusion networks (2019) 41St Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), , Germany
dc.relation.referencesRavi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.Z., Deep learning for health informatics (2017) IEEE Biomed. Health Inf., 21 (1), pp. 4-21
dc.relation.referencesRamachandram, D., Taylor, G.W., Deep multimodal learning: a survey on recent advances and trends (2017) IEEE Signal Process. Mag., 34 (6), pp. 96-108
dc.relation.referencesAmin, S.U., Hossain, M.S., Muhammad, G., Alhussein, M., Rahman, M.A., Cognitive smart healthcare for pathology detection and monitoring (2019) IEEE Access, 7, pp. 10745-10753
dc.relation.referencesLecun, Y., Bengio, Y., Convolutional networks for images, speech, and time series (1995) Handbook of Brain Theory and Neural Networks, USA: M. A. Arbib, , Cambridge, MA
dc.relation.referencesLi, M., Fei, Z., Zeng, M., Wu, F.-X., Li, Y., Pan, Y., Wang, J., Automated ICD-9 coding via a deep learning approach (2019) IEEE/ACM Trans. Comput. Biol. Bioinf., 16 (4), pp. 1193-1202
dc.relation.referencesYin, W., Yang, X., Zhang, L., Oki, E., ECG monitoring system integrated with IR-UWB radar based on CNN (2016) IEEE Access, 4, pp. 6344-6351
dc.relation.referencesLu, L., Harrison, A.P., Deep medical image computing in preventive and precision medicine (2018) IEEE Multimedia, 25 (3), pp. 109-113
dc.relation.referencesHuang, G., Liu, Z., van Der Maaten, L., Weinberger, K.Q., Densely connected convolutional networks (2017) 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR, , USA
dc.relation.referencesGuo, W., Wang, J., Wang, S., Deep multimodal representation learning: a survey (2019) IEEE Access, 7, pp. 63373-63394
dc.relation.referencesZhang, S.F., Zhai, J.H., Xie, B.J., Zhan, Y., Wang, X., Multimodal representation learning: Advances, trends and challenges (2019) International Conference on Machine Learning and Cybernetics (ICMLC), , Japan
dc.relation.referencesEyben, F., Wöllmer, M., Schuller, B., Opensmile: The Munich versatile and fast open-source audio feature extractor (2010) 18Th ACM Int. Conf. Multimedia
dc.relation.referencesEl-Sawy, A., Bakry, H.E., Loey, M., CNN for handwritten Arabic digits recognition based on LeNet-5 (2016) International Conference on Advanced Intelligent Systems and Informatics
dc.relation.referencesMinhas, R.A., Javed, A., Irtaza, A., Shot classification of field sports videos using AlexNet convolutional neural network (2019) Appl. Sci., 9 (3), p. 483
dc.relation.referencesBalagourouchetty, L., Pragatheeswaran, J.K., Pottakkat, B., Ramkumar, G., GoogLeNet-based ensemble FCNet classifier for focal liver lesion diagnosis (2020) IEEE J. Biomed. Health Inf., 24 (6), pp. 1686-1694
dc.relation.referencesSimonyan, K., Zisserman, A., (2016) Very Deep Convolutional Networks for Large-Scale Image recognition.” Computer Vision and Pattern Recognition
dc.relation.referencesLu, Z., Jiang, X., Kot, A., Deep coupled resnet for low-resolution face recognition (2018) IEEE Signal Process. Lett., 25 (4), pp. 526-530
dc.relation.referencesYang, M., Zhang, L., Feng, X., Zhang, D., Fisher discrimination dictionary learning for sparse representation (2011) International Conference on Computer Vision, , Spain
dc.relation.referencesBaltrušaitis, T., Robinson, P., Morency, L.P., OpenFace: an open source facial behavior analysis toolkit (2016) IEEE Winter Conference on Applications of Computer Vision (WACV).
dc.relation.referencesBurlina, P., Freund, D.E., Joshi, N., Wolfson, Y., Bressler, N.M., Detection of age-related macular degeneration via deep learning (2016) IEEE 13Th International Symposium on Biomedical Imaging (ISBI), , Prague
dc.relation.referencesLiu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., Wang, J., Applications of deep learning to MRI images: a survey (2018) Big Data Min. Anal., 1 (1), pp. 1-18
dc.relation.referencesHu, P., Wu, F., Peng, J., Bao, Y., Chen, F., Kong, D., Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets (2017) Int. J. Comput. Assist Radiol. Surg., 12 (3), pp. 399-411
dc.relation.referencesBar, Y., Diamant, I., Wolf, L., Greenspan, H., Deep learning with non-medical training used for chest pathology identification (2015) Medical Imaging: Computer-Aided Diagnosis
dc.relation.referencesChe, D., Safran, M., Peng, Z., From Big data to big data mining: Challenges, issues, and opportunities (2013) International Conference on Database Systems for Advanced Applications
dc.relation.referencesGandomi, A., Haider, M., Beyond the hype: Big data concepts, methods, and analytics (2015) Int. J. Inf. Manag., 35 (2), pp. 133-144
dc.relation.referencesYe, Z., Tafti, A.P., He, K.Y., Wang, K., He, M.M., Sparktext: biomedical text mining on big data framework (2016) PLoS ONE, 11 (9)
dc.relation.referencesLeibetseder, A., Petscharnig, S., Primusal, M.J.E., Lapgyn4: A dataset for 4 automatic content analysis problems in the domain of laparoscopic gynecology (2018) 9Th ACM Multimedia Systems Conference
dc.relation.referencesPogorelov, K., Randel, K.R., de Langeal, T.E., Nerthus: A bowel preparation quality video dataset (2017) 8Th ACM on Multimedia Systems Conference
dc.relation.referencesPogorelov, K., Randel, K.R., Griwodzal, C.E., Kvasir: A multi-class image data set for computer aided gastrointestinal disease detection (2017) ACM Multimedia Systems(Mmsys)
dc.relation.referencesSchoeffmann, K., Taschwer, M., Sarny, S., Cataract-101--video dataset of101 cataract surgeries (2018) ACM International Conference on Multimedia Retrieval (ICMR)
dc.relation.referencesNguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S., Deepr: a convolutional net for medical records (2017) IEEE J. Biomed. Health Inf., 21 (1), pp. 22-30
dc.relation.referencesChoi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J., Doctor ai: Predicting clinical events via recurrent neural networks (2016) ” 1St Mach. Learn. Healthcare Conf.
dc.relation.referencesGuo, H., Zhang, Y., Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer’s disease (2020) IEEE Access, 8, pp. 115383-115392
dc.relation.referencesHuang, C., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China (2020) The Lancet, 395, pp. 497-506. , 10223
dc.relation.referencesWang, D., Hu, B., Hu, C., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China (2020) JAMA, 323 (11), p. 1061
dc.relation.referencesVarela-Santos, S., Melin, P., A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks (2020) Inf. Sci., 545, pp. 403-414
dc.relation.referencesBankman, I., (2008) Handbook of Medical Image Processing and Analysis, , San Diego, CA, USA, Academic Press
dc.relation.referencesIsmael, A.M., Sengür, A., Deep learning approaches for COVID-19 detection based on chest X-ray images (2020) Exp Syst. Appl., 164
dc.relation.referencesWang, S.-H., Nayak, D.R., Guttery, D.S., COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis (2020) Inf. Fusio, 68, pp. 131-148
dc.relation.referencesShorfuzzaman, M., Hossain, M.S., MetaCOVID: a siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients (2020) Pattern Recognit., 113, p. 107700
dc.relation.referencesHossain, M.S., Muhammad, G., Guizani, N., Explainable AI and mass surveillance system-based healthcare framework to combat COVID-i9 like pandemics (2020) IEEE Netw., 34 (4), pp. 126-132
dc.relation.referencesYunus, R., Arif, O., Afzal, H., Amjad, M.F., Abbas, H., Bokhari, H.N., A framework to estimate the nutritional value of food in real time using deep learning techniques (2018) IEEE Access, 7, pp. 2643-2652
dc.relation.referencesMikolov, T., Chen, K., Corrado, G., Dean, J., Efficient estimation of word representations in vector space (2013) Computation and Language
dc.relation.referencesSzegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., Rethinking the inception architecture for computer vision (2016) IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dc.relation.referencesSzegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., Inception-v4, Inception-ResNet and the impact of residual connections on learning (2016) Computer Vision and Pattern Recognition
dc.relation.referencesCheng, G., Wan, Y., Saudagar, A.N., Namuduri, K., Buckles, B.P., Advances in human action recognition: A survey (2015) Computer Vision and Pattern Recognition
dc.relation.referencesBernal, E.A., Yang, X., Li, Q., Kumar, J., Madhvanath, S., Ramesh, P., Bala, R., Deep temporal multimodal fusion for medical procedure monitoring using wearable sensors (2018) IEEE Trans. Multimed., 20 (1), pp. 107-118
dc.relation.referencesKumar, J., Li, Q., Kyal, S., Bernal, E.A., Bala, R., On-the-Fly Hand detection training with application in egocentric action recognition (2015) IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
dc.relation.referencesShojaei-Hashemi, A., Nasiopoulos, P., Little, J.J., Pourazad, M.T., Video-based human fall detection in smart homes using deep learning (2018) IEEE International Symposium on Circuits and Systems (ISCAS), Italy.
dc.relation.referencesShahroudy, A., Liu, J., Ng, T.T., Wang, G., NTU RGB+D: A large scale dataset for 3d human activity analysis (2016) IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dc.relation.referencesMuhammad, K., Khan, S., Ser, J.D., de Albuquerque, V.H.C., Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey (2020) IEEE Transactions on Neural Networks and Learning Systems. Early Access, pp. 1-16
dc.relation.referencesAbadi, M., TensorFlow: Learning functions at scale (2016) 21St ACM SIGPLAN International Conference on Functional
dc.relation.referencesRasiwasia, N., Pereira, J.C., Coviello, E., A new approach to cross-modal multimedia retrieval (2010) 18Th ACM International Conference on Multimedia
dc.relation.referencesZhang, J., Han, Y., Tang, J., Hu, Q., Jiang, J., Semi-supervised image-to-video adaptation for video action recognition (2017) IEEE Trans. Cybern., 47 (4), pp. 960-973
dc.relation.referencesPan, S.J., Yang, Q., A Survey on Transfer Learning (2010) IEEE Trans. Knowl. Data Eng., 22 (10), pp. 1345-1359
dc.relation.referencesHe, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition (2016) IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dc.relation.referencesPennington, J., Socher, R., Manning, C.D., GloVe: Global vectors for word representation (2014) Conf. Empirical Methods Natural Lang. Process
dc.relation.referencesRiegler, M., Lux, M., Griwodz, C., Multimedia and medicine: Teammates for better disease detection and survival (2016) 24Th ACM International Conference on Multimedia
dc.relation.referencesSaddik, A.E., Digital twins: the convergence of multimedia technologies (2018) IEEE Multimedia, 25 (2), pp. 87-92
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem