Show simple item record

dc.contributor.authorPérez S
dc.contributor.authorGiraldo S
dc.contributor.authorForgionny A
dc.contributor.authorFlórez E
dc.contributor.authorAcelas N.
dc.date.accessioned2023-10-24T19:24:59Z
dc.date.available2023-10-24T19:24:59Z
dc.date.created2022
dc.identifier.issn21906815
dc.identifier.urihttp://hdl.handle.net/11407/8027
dc.description.abstractLarge quantities of orange peel wastes are generated and require adequate management and disposal into the environment. Agricultural waste valorization is a strong research topic, due to the increasing need for achieving a sustainable environment. Especially, the development of adsorbent materials applied to wastewater treatment for efficient phosphorus recovery and reuse systems is a challenge of current interest in research. In this work, a novel low-cost biocomposite was obtained by calcination of orange peel (OP) and eggshell (ES), which is highly effective for P recovery from synthetic aqueous solutions and domestic wastewater. After calcination at 700 °C, the material with a ratio by weight of OP/ES = 1 showed a high adsorption capacity (Qmax = 315.25 mg P/g) compared to other materials previously reported. The XRD and FTIR characterization results of the materials after the P removal showed that brushite (Ca(HPO4)•2H2O) is the main calcium phase obtained at pH 6, while apatite (Ca5(PO4)3OH) is favored at a pH higher than 8. Moreover, the ESOP adsorbents showed a high P adsorption from wastewater, with 98.6% of P recovery as apatite. Additionally, Ca5(PO4)3OH and Ca(HPO4)•2H2O phases exhibited a high solubility of P in 2% formic acid releasing up to 97.50 and 194.22 mg P/g. The results of this work indicate that calcined ESOP is a promising material for P recovery from aqueous solution, forming calcium phosphates with great potential to be used as alternative phosphate fertilizer, contributing to implementing the 3R slogan “Reduce, Reuse, Recycle” based on a circular economy. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132206624&doi=10.1007%2fs13399-022-02948-6&partnerID=40&md5=637e39576b77def6cf0364fea9e1ac20
dc.sourceBiomass Convers. Biorefinery
dc.sourceBiomass Conversion and Biorefineryeng
dc.subjectAdsorptioneng
dc.subjectEggshelleng
dc.subjectFertilizereng
dc.subjectOrange peeleng
dc.subjectPhosphoruseng
dc.titleEco-friendly reuse of agricultural wastes to produce biocomposites with high potential in water treatment and fertilizerseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1007/s13399-022-02948-6
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationPérez, S., Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationGiraldo, S., Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationForgionny, A., Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.relation.referencesEnsure sustainable consumption and production patterns (2018) In: A New Era in Global Health., 12. , https://unstats.un.org/sdgs/report/2018/goal-12/, United Nations, Goal, Springer Publishing Company, New York, Accessed 10 Jun 2022
dc.relation.referencesSun, Y., Wang, T., Sun, X., The potential of biochar and lignin-based adsorbents for wastewater treatment: comparison, mechanism, and application—a review (2021) Ind Crops Prod, 166
dc.relation.referencesKee, S.H., Chiongson, J.B.V., Saludes, J.P., Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories – a viable domain of circular economy (2021) Environ Pollut, 271
dc.relation.referencesHashmi, Z., Jatoi, A.S., Nadeem, S., (2022) Comparative analysis of conventional to biomass-derived adsorbent for wastewater treatment: a review, , Springer, Berlin Heidelberg
dc.relation.referencesDomingos, I., Ferreira, J., Cruz-Lopes, L., Esteves, B., Polyurethane foams from liquefied orange peel wastes (2019) Food Bioprod Process, 115, pp. 223-229
dc.relation.referencesCalabrò, P.S., Panzera, M.F., Anaerobic digestion of ensiled orange peel waste: preliminary batch results (2018) Therm Sci Eng Prog, 6, pp. 355-360
dc.relation.referencesOrtiz-Sanchez, M., Solarte-Toro, J.C., Orrego-Alzate, C.E., Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment (2021) Biomass Convers Biorefinery, 11, pp. 645-659
dc.relation.referencesOkon, N., Rajni, E., Rishav, G., Waste to resource recovery: mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution (2022) Biomass Convers Biorefinery
dc.relation.referencesEl Nemr, A., Aboughaly, R.M., El Sikaily, A., Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment (2020) Biomass Convers Biorefinery
dc.relation.referencesPhotiou, P., Koutsokeras, L., Constantinides, G., Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica (2021) J Clean Prod, 278
dc.relation.referencesXiang, A., Gao, Z., Zhang, K., Study on the Cd (II) adsorption of biochar based carbon fertilizer (2021) Ind Crops Prod, 174
dc.relation.referencesCordell, D., Drangert, J.O., White, S., The story of phosphorus: global food security and food for thought (2009) Glob Environ Chang, 19, pp. 292-305
dc.relation.referencesChen, L., Zhao, X., Pan, B., Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability (2015) J Hazard Mater, 284, pp. 35-42
dc.relation.referencesMa, D., Chen, S., Lu, J., Liao, H., Study of the effect of periphyton nutrient removal on eutrophic lake water quality (2019) Ecol Eng, 130, pp. 122-130
dc.relation.referencesNguyen, T.A.H., Ngo, H.H., Guo, W.S., Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles (2014) Bioresour Technol, 169, pp. 750-762
dc.relation.referencesKoppelaar, R.H.E.M., Weikard, H.P., Assessing phosphate rock depletion and phosphorus recycling options (2013) Glob Environ Chang, 23, pp. 1454-1466
dc.relation.referencesRobles, Á., Aguado, D., Barat, R., New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy (2020) Bioresour Technol, 300
dc.relation.referencesMajee, S., Halder, G., Mandal, D.D., Transforming wet blue leather and potato peel into an eco-friendly bio-organic NPK fertilizer for intensifying crop productivity and retrieving value-added recyclable chromium salts (2021) J Hazard Mater, 411
dc.relation.referencesSmol, M., Transition to circular economy in the fertilizer sector—analysis of recommended directions and end-users’ perception of waste-based products in Poland (2021) Energies, 14. , (,),.,., https://doi.org/10.3390/en14144312
dc.relation.referencesYuan, Z., Pratt, S., Batstone, D.J., Phosphorus recovery from wastewater through microbial processes (2012) Curr Opin Biotechnol, 23, pp. 878-883
dc.relation.referencesChojnacka, K., Moustakas, K., Witek-Krowiak, A., Bio-based fertilizers: a practical approach towards circular economy (2020) Bioresour Technol, 295
dc.relation.referencesAlmanassra, I.W., Mckay, G., Kochkodan, V., A state of the art review on phosphate removal from water by biochars (2021) Chem Eng J, 409
dc.relation.referencesCheng, J., Li, X., Xiao, X., Metal oxide loaded biochars derived from Chinese bai jiu distillers’ grains used for the adsorption and controlled release of phosphate (2021) Ind Crops Prod, 173
dc.relation.referencesPérez, S., Muñoz-Saldaña, J., Garcia-Nunez, J.A., Unraveling the Ca–P species produced over the time during phosphorus removal from aqueous solution using biocomposite of eggshell-palm mesocarp fiber (2022) Chemosphere, 287
dc.relation.referencesPérez, S., Muñoz-Saldaña, J., Acelas, N., Flórez, E., Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber (2021) J Environ Chem Eng, 9
dc.relation.referencesRamirez-Muñoz, A., Pérez, S., Flórez, E., Acelas, N., Recovering phosphorus from aqueous solutions using water hyacinth (Eichhornia crassipes) toward sustainability through its transformation to apatite (2021) J Environ Chem Eng, 9
dc.relation.referencesQuisperima, A., Pérez, S., Flórez, E., Acelas, N., Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater (2022) Bioresour Technol, 343
dc.relation.referencesCao, H., Wu, X., Syed-Hassan, S.S.A., Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell (2020) Bioresour Technol, 318. , (,),.,:., https://doi.org/10.1016/j.biortech.2020.124063
dc.relation.referencesLiu, X., Shen, F., Qi, X., Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw (2019) Sci Total Environ, 666, pp. 694-702
dc.relation.referencesPanagiotou, E., Kafa, N., Koutsokeras, L., Turning calcined waste egg shells and wastewater to Brushite: phosphorus adsorption from aqua media and anaerobic sludge leach water (2018) J Clean Prod, 178, pp. 419-428
dc.relation.referencesTrazzi, P.A., Leahy, J.J., Hayes, M.H.B., Kwapinski, W., Adsorption and desorption of phosphate on biochars (2016) J Environ Chem Eng, 4, pp. 37-46
dc.relation.referencesSantos, C.M., Dweck, J., Viotto, R.S., Application of orange peel waste in the production of solid biofuels and biosorbents (2015) Bioresour Technol, 196, pp. 469-479
dc.relation.referencesWen, Y., Zheng, Z., Wang, S., Magnetic bio-activated carbons production using different process parameters for phosphorus removal from artificially prepared phosphorus-rich and domestic wastewater (2021) Chemosphere, 271
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Sorption isotherms: a review on physical bases, modeling and measurement (2007) Appl Geochemistry, 22, pp. 249-275
dc.relation.referencesZheng, X., Ye, Y., Jiang, Z., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci Total Environ, 738. , (,),.,:., https://doi.org/10.1016/j.scitotenv.2020.139786
dc.relation.referencesRajan, S.S.S., Brown, M.W., Boyes, M.K., Upsdell, M.P., Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks (1992) Fertil Res, 32, pp. 291-302
dc.relation.referencesLiu, Q., Fang, Z., Liu, Y., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag, 87, pp. 71-77
dc.relation.referencesBakatula, E.N., Richard, D., Neculita, C.M., Zagury, G.J., Determination of point of zero charge of natural organic materials (2018) Environ Sci Pollut Res, 25, pp. 7823-7833
dc.relation.referencesMahmood, T., Saddique, M.T., Naeem, A., Comparison of different methods for the point of zero charge determination of NiO (2011) Ind Eng Chem Res, 50, pp. 10017-10023
dc.relation.referencesSantos, A.F., Arim, A.L., Lopes, D.V., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J Environ Manage, 238, pp. 451-459
dc.relation.referencesKöse, T.E., Kivanç, B., Adsorption of phosphate from aqueous solutions using calcined waste eggshell (2011) Chem Eng J, 178, pp. 34-39
dc.relation.referencesLiu, D., Zhu, H., Wu, K., Understanding the effect of particle size of waste concrete powder on phosphorus removal efficiency (2020) Constr Build Mater, 236
dc.relation.referencesZhou, J.Z., Feng, L., Zhao, J., Efficient and controllable phosphate removal on hydrocalumite by multi-step treatment based on pH-dependent precipitation (2012) Chem Eng J, 185-186, pp. 219-225
dc.relation.referencesMitrogiannis, D., Psychoyou, M., Baziotis, I., Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite (2017) Chem Eng J, 320, pp. 510-522
dc.relation.referencesVu, H.H.T., Khan, M.D., Chilakala, R., Utilization of lime mud waste from paper mills for efficient phosphorus removal (2019) Sustain, 11. , https://doi.org/10.3390/su11061524
dc.relation.referencesIdowu, B., Cama, G., Deb, S., Di Silvio, L., In vitro osteoinductive potential of porous monetite for bone tissue engineering (2014) J Tissue Eng, 5. , (,),.,:., https://doi.org/10.1177/2041731414536572
dc.relation.referencesDrouet, C., Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds (2013) Biomed Res Int, 2013, pp. 1-12
dc.relation.referencesYang, J., Zhang, M., Wang, H., Efficient recovery of phosphate from aqueous solution using biochar derived from co-pyrolysis of sewage sludge with eggshell (2021) J Environ Chem Eng, 9. , https://doi.org/10.1016/j.jece.2021.105354
dc.relation.referencesWang, S., Kong, L., Long, J., Adsorption of phosphorus by calcium-flour biochar: isotherm, kinetic and transformation studies (2018) Chemosphere, 195, pp. 666-672
dc.relation.referencesPérez, S., Muñoz-Sadaña, J., Acelas, N., Flórez, E., Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber (2020) J Environ Chem Eng, , https://doi.org/10.1016/j.jece.2020.104684
dc.relation.referencesRibeiro, I.C.A., Teodoro, J.C., Guilherme, L.R.G., Melo, L.C.A., Hydroxyl-eggshell: a novel eggshell byproduct highly effective to recover phosphorus from aqueous solutions (2020) J Clean Prod, 274. , (,),.,:., https://doi.org/10.1016/j.jclepro.2020.123042
dc.relation.referencesRajahmundry, G.K., Garlapati, C., Kumar, P.S., Statistical analysis of adsorption isotherm models and its appropriate selection (2021) Chemosphere, 276
dc.relation.referencesBacelo, H., Pintor, A.M.A., Santos, S.C.R., Performance and prospects of different adsorbents for phosphorus uptake and recovery from water (2020) Chem Eng J, 381
dc.relation.referencesZhang, Y., Li, H., Zhang, Y., Statistical optimization and batch studies on adsorption of phosphate using Al-eggshell (2018) Adsorpt Sci Technol, 36, pp. 999-1017
dc.relation.referencesTorit, J., Phihusut, D., Phosphorus removal from wastewater using eggshell ash (2019) Environ Sci Pollut Res, 26, pp. 34101-34109
dc.relation.referencesLi, M., Liu, J., Xu, Y., Qian, G., Phosphate adsorption on metal oxides and metal hydroxides: a comparative review (2016) Environ Rev, 24, pp. 319-332
dc.relation.referencesBwatanglang, I.B., Magili, S.T., Kaigamma, I., Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks (2021) PeerJ Phys Chem, 3
dc.relation.referencesVandecandelaere, N., Rey, C., Drouet, C., Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters (2012) J Mater Sci Mater Med, 23, pp. 2593-2606
dc.relation.referencesGu, S., Fu, B., Ahn, J.-W., Fang, B., Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul (2021) Korea J Clean Prod, 280
dc.relation.referencesMorales-Figueroa, C., Teutli-Sequeira, A., Linares-Hernández, I., Phosphate removal from food industry wastewater by chemical precipitation treatment with biocalcium eggshell (2021) J Environ Sci Heal Part A, 56, pp. 1-17
dc.relation.referencesSitepu, H., O’Connor, B.H., Li, D., Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders (2005) J Appl Crystallogr, 38, pp. 158-167
dc.relation.referencesRefinement, R., International tables for crystallography (1983) J Appl Crystallogr, 16, p. 284
dc.relation.referencesKumar, M., Xie, J., Chittur, K., Riley, C., Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution (1999) Biomaterials, 20, pp. 1389-1399
dc.relation.referencesHermassi, M., Valderrama, C., Moreno, N., Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer (2017) J Environ Chem Eng, 5, pp. 160-169
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record