Mostrar el registro sencillo del ítem

dc.contributor.authorArias A
dc.contributor.authorGómez S
dc.contributor.authorRojas-Valencia N
dc.contributor.authorNúñez-Zarur F
dc.contributor.authorCappelli C
dc.contributor.authorMurillo-López J.A
dc.contributor.authorRestrepo A.
dc.date.accessioned2023-10-24T19:25:10Z
dc.date.available2023-10-24T19:25:10Z
dc.date.created2022
dc.identifier.issn20462069
dc.identifier.urihttp://hdl.handle.net/11407/8042
dc.description.abstractA series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C-C, C-O, C O, and C-N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O-H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C-N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth. © 2022 The Royal Society of Chemistry.eng
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85141717778&doi=10.1039%2fd2ra06000k&partnerID=40&md5=587a15fec05ba028b8059e5b3dfd114d
dc.sourceRSC Adv.
dc.sourceRSC Advanceseng
dc.titleFormation and evolution of C-C, C-O, C 00000000 00000000 00000000 00000000 11111111 00000000 11111111 00000000 00000000 00000000 O and C-N bonds in chemical reactions of prebiotic interesteng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1039/d2ra06000k
dc.relation.citationvolume12
dc.relation.citationissue44
dc.relation.citationstartpage28804
dc.relation.citationendpage28817
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationArias, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationGómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationRojas-Valencia, N., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Escuela de Ciencias y Humanidades, Departamento de Ciencias Básicas, Universidad Eafit, Medellín, AA 3300, Colombia
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationCappelli, C., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationMurillo-López, J.A., Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista, Concepción-Talcahuano, Talcahuano, 7100, Chile
dc.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesSutherland, J.D., The origin of life—out of the blue (2016) Angew. Chem., Int. Ed., 55, pp. 104-121
dc.relation.referencesPalmer, B., A review on the spontaneous formation of the building blocks of life and the generation of a set of hypotheses governing universal abiogenesis (2013) Int. J. Astrobiol., 12, pp. 39-44
dc.relation.referencesPérez-Villa, A., Pietrucci, F., Saitta, A.M., Prebiotic chemistry and origins of life research with atomistic computer simulations (2020) Phys. Life Rev., 34, pp. 105-135
dc.relation.referencesPowner, M.W., Sutherland, J.D., Prebiotic chemistry: a new modus operandi (2011) Philos. Trans. R. Soc., B, 366, pp. 2870-2877
dc.relation.referencesBada, J.L., New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments (2013) Chem. Soc. Rev., 42, pp. 2186-2196
dc.relation.referencesLazcano, A., Miller, S.L., The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time (1996) Cell, 85, pp. 793-798
dc.relation.referencesOrgel, L.E., The origin of life—a review of facts and speculations (1998) Trends Biochem. Sci., 23, pp. 491-495
dc.relation.referencesCleaves, H.J., Prebiotic chemistry: what we know, what we don't (2012) Evol.: Educ. Outreach, 5, pp. 342-360
dc.relation.referencesJeancolas, C., Malaterre, C., Nghe, P., Thresholds in origin of life scenarios (2020) Iscience, 23, p. 101756
dc.relation.referencesTessera, M., Is pre-Darwinian evolution plausible? (2018) Biol. Direct, 13, pp. 1-18
dc.relation.referencesLeslie, E.O., Prebiotic chemistry and the origin of the RNA world (2004) Crit. Rev. Biochem. Mol. Biol., 39, pp. 99-123
dc.relation.referencesCech, T.R., The RNA worlds in context (2012) Cold Spring Harbor Perspect. Biol., 4, p. a006742
dc.relation.referencesJandura, A., Krause, H.M., The new RNA world: growing evidence for long noncoding RNA functionality (2017) Trends Genet., 33, pp. 665-676
dc.relation.referencesKrishnamurthy, R., Giving rise to life: transition from prebiotic chemistry to protobiology (2017) Acc. Chem. Res., 50, pp. 455-459
dc.relation.referencesDas, T., Ghule, S., Vanka, K., Insights into the origin of life: Did it begin from HCN and H2O? (2019) ACS Cent. Sci., 5, pp. 1532-1540
dc.relation.referencesTokunaga, A., Beck, S., Geballe, T., Lacy, J., Serabyn, E., The detection of HCN on Jupiter (1981) Icarus, 48, pp. 283-289
dc.relation.referencesAalto, S., Garcia-Burillo, S., Muller, S., Winters, J., Van Der Werf, P., Henkel, C., Costagliola, F., Neri, R., Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow-Dense molecular gas in the AGN wind (2012) Astron. Astrophys., 537, p. A44
dc.relation.referencesLellouch, E., Gurwell, M., Butler, B., Fouchet, T., Lavvas, P., Strobel, D., Sicardy, B., Bockelée-Morvan, D., Detection of CO and HCN in Pluto's atmosphere with ALMA (2017) Icarus, 286, pp. 289-307
dc.relation.referencesFegley, B., Prinn, R.G., Hartman, H., Watkins, G.H., Chemical effects of large impacts on the Earth's primitive atmosphere (1986) Nature, 319, pp. 305-308
dc.relation.referencesFerris, J.P., Hagan, W.J., Jr, HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis (1984) Tetrahedron, 40, pp. 1093-1120
dc.relation.referencesSchwartz, A.W., Voet, A., Van der Veen, M., Recent progress in the prebiotic chemistry of HCN (1984) Origins Life, 14, pp. 91-98
dc.relation.referencesMatthews, C.N., (2004) Origins, , Springer
dc.relation.referencespp pp 121-135
dc.relation.referencesNandi, S., Bhattacharyya, D., Anoop, A., Prebiotic chemistry of HCN tetramerization by automated reaction search (2018) Chem.-Eur. J., 24, pp. 4885-4894
dc.relation.referencesBader, R.F., A quantum theory of molecular structure and its applications (1991) Chem. Rev., 91, pp. 893-928
dc.relation.referencesPopelier, P.L., (2000) Atoms in Molecules: An Introduction, , Prentice Hall London
dc.relation.referencesGrabowski, S.J., What Is the Covalency of Hydrogen Bonding? (2011) Chem. Rev., 111, pp. 2597-2625
dc.relation.referencesReed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem. Rev., 88, pp. 899-926
dc.relation.referencesWeinhold, F., Landis, C.R., (2012) Discovering Chemistry with Natural Bond Orbitals, , and Wiley-VCH Hoboken NJ p 319
dc.relation.referencesGlendening, E.D., Landis, C.R., Weinhold, F., Natural bond orbital methods (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 1-42
dc.relation.referencesGómez, S., Restrepo, A., Hadad, C., Theoretical tools to distinguish O-ylides from O-ylidic complexes in carbene-solvent interactions (2015) Phys. Chem. Chem. Phys., 17, pp. 31917-31930
dc.relation.referencesGomez, S., Guerra, D., Lopez, J.G., Toro-Labbe, A., Restrepo, A., A detailed look at the reaction mechanisms of substituted carbenes with water (2013) J. Phys. Chem. A, 117, pp. 1991-1999
dc.relation.referencesTobón, P., Gomez, S., Restrepo, A., Núñez-Zarur, F., Role of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst (2021) Organometallics, 40, pp. 119-133
dc.relation.referencesFarfán, P., Gómez, S., Restrepo, A., Dissection of the Mechanism of the Wittig Reaction (2019) J. Inorg. Chem., 84, pp. 14644-14658
dc.relation.referencesFarfán, P., Gómez, S., Restrepo, A., On the origins of stereoselectivity in the Wittig reaction (2019) Chem. Phys. Lett., 728, pp. 153-155
dc.relation.referencesGiraldo, C., Gómez, S., Weinhold, F., Restrepo, A., Insight into the Mechanism of the Michael Reaction (2016) ChemPhysChem, 17, pp. 2022-2034
dc.relation.referencesGómez, S., Ramírez-Malule, H., Cardona-G, W., Osorio, E., Restrepo, A., Double-ring epimerization in the biosynthesis of clavulanic acid (2020) J. Phys. Chem. A, 124, pp. 9413-9426
dc.relation.referencesGómez, S., Osorio, E., Dzib, E., Islas, R., Restrepo, A., Merino, G., Revisiting the Rearrangement of Dewar Thiophenes (2020) Molecules, 25, p. 284
dc.relation.referencesMennucci, B., Polarizable continuum model (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 386-404
dc.relation.referencesTomasi, J., Mennucci, B., Cammi, R., Quantum Mechanical Continuum Solvation Models (2005) Chem. Rev., 105, pp. 2999-3094
dc.relation.referencesToro-Labbé, A., Gutiérrez-Oliva, S., Concha, M.C., Murray, J.S., Politzer, P., Analysis of two intramolecular proton transfer processes in terms of the reaction force (2004) J. Chem. Phys., 121, pp. 4570-4576
dc.relation.referencesToro-Labbé, A., Gutiérrez-Oliva, S., Murray, J., Politzer, P., A new perspective on chemical and physical processes: the reaction force (2007) Mol. Phys., 105, pp. 2619-2625
dc.relation.referencesMartínez, J., Toro-Labbé, A., The reaction force. A scalar property to characterize reaction mechanisms (2009) J. Math. Chem., 45, pp. 911-927
dc.relation.referencesGómez, S., Guerra, D., López, J.G., Toro-Labbé, A., Restrepo, A., A Detailed Look at the Reaction Mechanisms of Substituted Carbenes with Water (2013) J. Phys. Chem. A, 117, pp. 1991-1999
dc.relation.referencesParr, R.G., (1980) Horizons of quantum chemistry, , Springer pp 5-15
dc.relation.referencesParr, R.G., Zhou, Z., Absolute hardness: unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters (1993) Acc. Chem. Res., 26, pp. 256-258
dc.relation.referencesEchegaray, E., Toro-Labbé, A., Reaction electronic flux: a new concept to get insights into reaction mechanisms. Study of model symmetric nucleophilic substitutions (2008) J. Phys. Chem. A, 112, pp. 11801-11807
dc.relation.referencesCerón, M.L., Echegaray, E., Gutiérrez-Oliva, S., Herrera, B., Toro-Labbé, A., The reaction electronic flux in chemical reactions (2011) Sci. China: Chem., 54, pp. 1982-1988
dc.relation.referencesMorell, C., Tognetti, V., Bignon, E., Dumont, E., Hernandez-Haro, N., Herrera, B., Grand, A., Toro-Labbé, A., Insights into the chemical meanings of the reaction electronic flux (2015) Theor. Chem. Acc., 134, pp. 1-7
dc.relation.referencesRojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., A detailed look at the bonding interactions in the microsolvation of monoatomic cations (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2009) Gaussian 09 Revision E.01, , ;;;;;;;;
dc.relation.referencesGaussian Inc Wallingford CT
dc.relation.referencesKeith, T., (2013) AIMALL (version 13.05.06), , http://aim.tkgristmill.com, TK Gristmill Software Overland Park KS USA
dc.relation.referencesGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , and Theoretical Chemistry Institute University of Wisconsin Madison
dc.relation.referencesKasting, J.F., Ackerman, T.P., Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere (1986) Science, 234, pp. 1383-1385
dc.relation.referencesSummers, D.P., Chang, S., Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth (1993) Nature, 365, pp. 630-633
dc.relation.referencesValley, J.W., Peck, W.H., King, E.M., Wilde, S.A., A cool early Earth (2002) Geology, 30, pp. 351-354
dc.relation.referencesvon Paris, P., Rauer, H., Grenfell, J.L., Patzer, B., Hedelt, P., Stracke, B., Trautmann, T., Schreier, F., Warming the early Earth-CO2 reconsidered (2008) Planet. Space Sci., 56, pp. 1244-1259
dc.relation.referencesKasting, J.F., Howard, M.T., Atmospheric composition and climate on the early Earth (2006) Philos. Trans. R. Soc., B, 361, pp. 1733-1742
dc.relation.referencesSong, L., Kästner, J., Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations (2016) Phys. Chem. Chem. Phys., 18, pp. 29278-29285
dc.relation.referencesYung, Y., McElroy, M., Fixation of nitrogen in the prebiotic atmosphere (1979) Science, 203, pp. 1002-1004
dc.relation.referencesBarone, V., Latouche, C., Skouteris, D., Vazart, F., Balucani, N., Ceccarelli, C., Lefloch, B., Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations (2015) Mon. Not. R. Astron. Soc.: Lett., 453, pp. L31-L35
dc.relation.referencesCoveney, P.V., Swadling, J.B., Wattis, J.A., Greenwell, H.C., Theory, modelling and simulation in origins of life studies (2012) Chem. Soc. Rev., 41, pp. 5430-5446
dc.relation.referencesHao, J., Mokhtari, M., Pedreira-Segade, U., Michot, L.J., Daniel, I., Transition metals enhance the adsorption of nucleotides onto clays: Implications for the origin of life (2018) ACS Earth Space Chem., 3, pp. 109-119
dc.relation.referencesPonnamperuma, C., Shimoyama, A., Friebele, E., Clay and the origin of life (1982) Origins Life, 12, pp. 9-40
dc.relation.referencesRimola, A., Sodupe, M., Ugliengo, P., Role of mineral surfaces in prebiotic chemical evolution. In silico quantum mechanical studies (2019) Life, 9, p. 10
dc.relation.referencesKrug, J., Popelier, P., Bader, R., Theoretical study of neutral and of acid and base-promoted hydrolysis of formamide (1992) J. Phys. Chem., 96, pp. 7604-7616
dc.relation.referencesKrissansen-Totton, J., Arney, G.N., Catling, D.C., Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model (2018) Proc. Natl. Acad. Sci. U. S. A., 115, pp. 4105-4110
dc.relation.referencesBada, J.L., Bigham, C., Miller, S.L., Impact melting of frozen oceans on the early Earth: implications for the origin of life (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 1248-1250
dc.relation.referencesSchwartz, A.W., Joosten, H., Voet, A., Prebiotic adenine synthesis via HCN oligomerization in ice (1982) Biosystems, 15, pp. 191-193
dc.relation.referencesBada, J.L., How life began on Earth: a status report (2004) Earth Planet. Sci. Lett., 226, pp. 1-15
dc.relation.referencesMenor-Salván, C., Marín-Yaseli, M.R., Prebiotic chemistry in eutectic solutions at the water-ice matrix (2012) Chem. Soc. Rev., 41, pp. 5404-5415
dc.relation.referencesGauld, J.W., Audier, H., Fossey, J., Radom, L., Water-catalyzed interconversion of conventional and distonic radical cations: methanol and methyleneoxonium radical cations (1996) J. Am. Chem. Soc., 118, pp. 6299-6300
dc.relation.referencesGauld, J.W., Radom, L., Effects of neutral bases on the isomerization of conventional radical cations CH3X˙ + to their distonic isomers ˙CH2X+ H (X= F, OH, NH2): Proton-transport catalysis and other mechanisms (1997) J. Am. Chem. Soc., 119, pp. 9831-9839
dc.relation.referencesRimola, A., Sodupe, M., Ugliengo, P., Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach (2010) Phys. Chem. Chem. Phys., 12, pp. 5285-5294
dc.relation.referencesAntonczak, S., Ruiz-López, M., Rivail, J.-L., The hydrolysis mechanism of formamide revisited: comparison between ab initio, semiempirical and DFT results (1997) J. Mol. Model., 3, pp. 434-442
dc.relation.referencesOie, T., Loew, G.H., Burt, S.K., Binkley, J.S., MacElroy, R.D., Quantum chemical studies of a model for peptide bond formation: formation of formamide and water from ammonia and formic acid (1982) J. Am. Chem. Soc., 104, pp. 6169-6174
dc.relation.referencesJensen, J.H., Baldridge, K.K., Gordon, M.S., Uncatalyzed peptide bond formation in the gas phase (1992) J. Phys. Chem., 96, pp. 8340-8351
dc.relation.referencesAntonczak, S., Ruiz-Lopez, M., Rivail, J., Ab initio analysis of water-assisted reaction mechanisms in amide hydrolysis (1994) J. Am. Chem. Soc., 116, pp. 3912-3921
dc.relation.referencesGorb, L., Asensio, A., Tuñón, I., Ruiz-López, M.F., The mechanism of formamide hydrolysis in water from ab initio calculations and simulations (2005) Chem.-Eur. J., 11, pp. 6743-6753
dc.relation.referencesFarfán, P., Echeverri, A., Diaz, E., Tapia, J.D., Gómez, S., Restrepo, A., Dimers of formic acid: Structures, stability, and double proton transfer (2017) J. Chem. Phys., 147, p. 44312
dc.relation.referencesGómez, S., Rojas-Valencia, N., Gómez, S.A., Cappelli, C., Merino, G., Restrepo, A., A molecular twist on hydrophobicity (2021) Chem. Sci., 12, pp. 9233-9245
dc.relation.referencesUribe, L., Gómez, S., Giovannini, T., Egidi, F., Restrepo, A., An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO2− (2021) Phys. Chem. Chem. Phys., 23, pp. 14857-14872
dc.relation.referencesFerris, J., Wos, J., Ryan, T., Lobo, A., Donner, D., Biomolecules from HCN (1974) Origins Life, 5, pp. 153-157
dc.relation.referencesDavid, J., Gómez, S., Guerra, D., Guerra, D., Restrepo, A., A Comprehensive Picture of the Structures, Energies, and Bonding in the Alanine Dimers (2021) ChemPhysChem, 22, pp. 2401-2412
dc.relation.referencesFerus, M., Kubelík, P., Knížek, A., Pastorek, A., Sutherland, J., Civiš, S., High energy radical chemistry formation of HCN-rich atmospheres on early Earth (2017) Sci. Rep., 7, pp. 1-9
dc.relation.referencesBada, J.L., Cleaves, H.J., Ab initio simulations and the Miller prebiotic synthesis experiment (2015) Proc. Natl. Acad. Sci. U. S. A., 112, p. E342
dc.relation.referencesMorse, J.W., Mackenzie, F.T., Hadean ocean carbonate geochemistry (1998) Aquat. Geochem., 4, pp. 301-319
dc.relation.referencesFollmann, H., Brownson, C., Darwin's warm little pond revisited: from molecules to the origin of life (2009) Naturwissenschaften, 96, pp. 1265-1292
dc.relation.referencesFurukawa, Y., Sekine, T., Oba, M., Kakegawa, T., Nakazawa, H., Biomolecule formation by oceanic impacts on early Earth (2009) Nat. Geosci., 2, pp. 62-66
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem