Show simple item record

dc.contributor.authorYepes J.C
dc.contributor.authorRúa S
dc.contributor.authorOsorio M
dc.contributor.authorPérez V.Z
dc.contributor.authorMoreno J.A
dc.contributor.authorAl-Jumaily A
dc.contributor.authorBetancur M.J.
dc.date.accessioned2023-10-24T19:25:12Z
dc.date.available2023-10-24T19:25:12Z
dc.date.created2022
dc.identifier.issn20763417
dc.identifier.urihttp://hdl.handle.net/11407/8050
dc.description.abstractLower limb rehabilitation robot (LLRR) users, to successfully conduct isotonic exercises, require real-time feedback on the torque they exert on the robot to meet the goal of the treatment. Still, direct torque measuring is expensive, and indirect encoder-based estimation strategies, such as inverse dynamics (ID) and Nonlinear Disturbance Observers (NDO), are sensitive to Body Segment Inertial Parameters (BSIPs) uncertainties. We envision a way to minimize such parametric uncertainties. This paper proposes two human–robot interaction torque estimation methods: the Identified ID-based method (IID) and the Identified NDO-based method (INDO). Evaluating in simulation the proposal to apply, in each rehabilitation session, a sequential two-phase method: (1) An initial calibration phase will use an online parameter estimation to reduce sensitivity to BSIPs uncertainties. (2) The torque estimation phase uses the estimated parameters to obtain a better result. We conducted simulations under signal-to-noise ratio (SNR) = 40 dB and 20% BSIPs uncertainties. In addition, we compared the effectiveness with two of the best methods reported in the literature via simulation. Both proposed methods obtained the best Coefficient of Correlation, Mean Absolute Error, and Root Mean Squared Error compared to the benchmarks. Moreover, the IID and INDO fulfilled more than 72.2% and 88.9% of the requirements, respectively. In contrast, both methods reported in the literature only accomplish 27.8% and 33.3% of the requirements when using simulations under noise and BSIPs uncertainties. Therefore, this paper extends two methods reported in the literature and copes with BSIPs uncertainties without using additional sensors. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85131529997&doi=10.3390%2fapp12115529&partnerID=40&md5=2c018eaa2f61dad2eb8e62e2cf18a222
dc.sourceAppl. Sci.
dc.sourceApplied Sciences (Switzerland)eng
dc.subjectComputer simulationeng
dc.subjectExoskeletonseng
dc.subjectForce feedbackeng
dc.subjectMathematical modeleng
dc.subjectNonlinear systemseng
dc.subjectSystem identificationeng
dc.titleHuman-Robot Interaction Torque Estimation Methods for a Lower Limb Rehabilitation Robotic System with Uncertaintieseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaArtículo
dc.identifier.doi10.3390/app12115529
dc.relation.citationvolume12
dc.relation.citationissue11
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationYepes, J.C., Electronics Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationRúa, S., Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationOsorio, M., Electronics Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationPérez, V.Z., Electronics Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationMoreno, J.A., Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
dc.affiliationAl-Jumaily, A., ENSTA Bretagne, French State Graduate, Brest, 29200, France, School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, 2678, Australia, School of Science, Edith Cowan University, Joondalup, 6027, Australia
dc.affiliationBetancur, M.J., Electronics Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.relation.references(2011) World Report on Disability, , Technical Report
dc.relation.referencesWorld Health Organization: Geneva, Switzerland
dc.relation.references(2016) UNDP Support to the Implementation of Sustainable Development Goal 1: Poverty Reduction, , Technical Report
dc.relation.referencesUnited Nations Development Programme: New York, NY, USA
dc.relation.references(2014) Defunción por Grupo de Edad, Sexo, Segœn Departamento, Municipio y área de Residencia, , Departamento Administrativo Nacional de Estadística: Bogotá, Colombia
dc.relation.references(2014) Disability Statistics—Prevalence and Demographics, , Technical Report
dc.relation.referencesEuropean Union: Maastricht, The Netherlands
dc.relation.references(2012) Aplicacion de la Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud en Estudios de Prevalencia de Discapacidad en las Américas, , Technical Report
dc.relation.referencesOrganización Panamericana de la Salud: Washington, DC, USA
dc.relation.referencesAlmeras, D., Milosavljevic, V., Informe regional sobre la medición de la discapacidad. Una mirada a los procedimientos de medición de la discapacidad en América Latina y el Caribe (2014), 3860, p. 48. , Comisión Económica para América Latina y el Caribe: Santiago, Chile
dc.relation.references(2019) Bases del Plan Nacional de Desarrollo 2018–2022, , Technical Report
dc.relation.referencesDepartamento Nacional de Planeación: Bogotá, Colombia
dc.relation.references(2019) Víctimas de Minas Antipersonal y Municiones sin Explosionar, , Descontamina Colombia: Bogotá, Colombia
dc.relation.referencesDollar, A.M., Herr, H., Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art (2008) IEEE Trans. Robot, 24, pp. 144-158. , [CrossRef]
dc.relation.referencesChoi, J.H., Kwak, J.H., An, J., Oh, S., Force Sensorless Multi-functional Impedance Control for Rehabilitation Robot (2017) IFAC PapersOnLine, 50, pp. 12077-12082. , [CrossRef]
dc.relation.referencesHwang, B., Jeon, D., A method to accurately estimate the muscular torques of human wearing exoskeletons by Torque sensors (2015) Sensors, 15, pp. 8337-8357. , [CrossRef] [PubMed]
dc.relation.referencesSaadatzi, M., Long, D.C., Celik, O., Comparison of Human-Robot Interaction Torque Estimation Methods in a Wrist Rehabilitation Exoskeleton (2018) J. Intell. Robot. Syst, 10, pp. 1-17. , [CrossRef]
dc.relation.referencesKong, K., Jeon, D., Design and control of an exoskeleton for the elderly and patients (2006) IEEE/ASME Trans. Mechatron, 11, pp. 428-432. , [CrossRef]
dc.relation.referencesWang, X., Chen, F., Zha, F., Qiu, S., Li, M., Deng, J., Towards Online Estimation of Human Joint Muscular Torque with a Lower Limb Exoskeleton Robot (2018) Appl. Sci, 8, p. 1610. , [CrossRef]
dc.relation.referencesGrun, M., Konigorski, U., Observer Based Method for Joint Torque Estimation in Active Orthoses (2012) IFAC Proc, 45, pp. 199-204. , [CrossRef]
dc.relation.referencesHayashi, T., Kawamoto, H., Sankai, Y., Control method of robot suit HAL working as operator’s muscle using biological and dynamical information (2005) Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2, pp. 3455-3460. , Edmonton, AB, Canada, 2–6 August [CrossRef]
dc.relation.referencesAnwar, T., Al-Dmour, H., RBF based adaptive neuro-fuzzy inference system to torque estimation from EMG signal (2017) Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1-8. , Honolulu, HI, USA, 27 November–1 December
dc.relation.referencesHeine, C.B., Menegaldo, L.L., Numerical validation of a subject-specific parameter identification approach of a quadriceps femoris EMG-driven model (2018) Med Eng. Phys, 53, pp. 66-74. , [CrossRef]
dc.relation.referencesZhang, L., Zhu, X., Gutierrez Farewik, E., Wang, R., Estimation of ankle dynamic joint torque by a neuromusculoskeletal solverinformed NN model Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2021, pp. 75-80. , Chongqing, China, 3–5 July 2021
dc.relation.references[CrossRef]
dc.relation.referencesAljuboury, A.S., Hameed, A.H., Ajel, A.R., Humaidi, A.J., Alkhayyat, A., Mhdawi, A.K.A., Robust Adaptive Control of Knee Exoskeleton-Assistant System Based on Nonlinear Disturbance Observer (2022) Actuators, 11, p. 78. , [CrossRef]
dc.relation.referencesSaadatzi, M., Long, D.C., Celik, O., Torque estimation in a wrist rehabilitation robot using a nonlinear disturbance observer (2015) Proceedings of the ASME 2015 Dynamic Systems and Control Conference, , Columbus, OH, USA, 28 October
dc.relation.referencesKong, K., Moon, H., Hwang, B., Jeon, D., Tomizuka, M., Robotic rehabilitation treatments: Realization of aquatic therapy effects in exoskeleton systems (2009) Proceedings of the 2009 IEEE International Conference on Robotics and Automation, 1, pp. 1923-1928. , Kobe, Japan, 12–17 May [CrossRef]
dc.relation.referencesBrahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H., Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics (2017) Proceedings of the IEEE International Conference on Rehabilitation Robotics, pp. 1369-1374. , London, UK, 17–20 July [CrossRef]
dc.relation.referencesFahmy, A.A., Abdel Ghany, A.M., Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications (2013) Ain Shams Eng. J, 4, pp. 805-829. , [CrossRef]
dc.relation.referencesWinter, D.A., (2009) Biomechanics and Motor Control of Human Movement, p. 277. , 2nd ed.
dc.relation.referencesJohn Wiley & Sons, Inc.: Hoboken, NJ, USA, [CrossRef]
dc.relation.referencesPlagenhoef, S., Evans, F.G., Abdelnour, T., Anatomical Data for Analyzing Human Motion (1983) Res. Q. Exerc. Sport, 54, pp. 169-178. , [CrossRef]
dc.relation.referencesDe Leva, P., Adjustments to zatsiorsky-seluyanov’s segment inertia parameters (1996) J. Biomech, 29, pp. 1223-1230. , [CrossRef]
dc.relation.referencesBarkan, U., Masayoshi, N., Kazuyuki, H., Michihiro, K., Tatsuo, N., Proof of Concept for Robot-Aided Upper Limb Rehabilitation Using Disturbance Observers (2015) IEEE Trans. Hum.-Mach. Syst, 45, pp. 110-118
dc.relation.referencesMohammed, S., Huo, W., Huang, J., Rifaï, H., Amirat, Y., Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis (2014) Robot. Auton. Syst, 75, pp. 41-49. , [CrossRef]
dc.relation.referencesBruno, S., Lorenzo, S., Luigi, V., Giuseppe, O., (2009) Kinematics BT-Robotics: Modelling, Planning and Control, pp. 39-103. , Springer: London, UK
dc.relation.referencesFu, K., Gonzalez, R., Lee, C., (1987) Robotics: Control, Sensing, Vision and Intelligence, p. 1. , McGraw-Hill: New York, NY, USA
dc.relation.referencesLewis, F.L., Dawson, D.M., Abdallah, C.T., (2004) Robot Manipulator Control Theory and Practice, , CRC Press: Boca Raton, FL, USA
dc.relation.referencesDenavit, J., Hartenberg, R.S., A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices (1955) J. Appl. Mech, 22, pp. 215-221. , [CrossRef]
dc.relation.referencesMohammadi, A., Tavakoli, M., Marquez, H.J., Hashemzadeh, F., Nonlinear disturbance observer design for robotic manipulators (2013) Control Eng. Pract, 21, pp. 253-267. , [CrossRef]
dc.relation.referencesChen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J., A nonlinear disturbance observer for robotic manipulators (2000) IEEE Trans. Ind. Electron, 47, pp. 932-938. , [CrossRef]
dc.relation.referencesRiani, A., Madani, T., Hadri, A.E., Benallegue, A., Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton (2017) Proceedings of the IEEE International Conference on Rehabilitation Robotics, pp. 695-701. , London, UK, 17–20 July [CrossRef]
dc.relation.referencesKhalil, W., Dombre, E., (2004) Modeling, Identification and Control of Robots, pp. 1-480. , Butterworth-Heinemann: Oxford, UK, [CrossRef]
dc.relation.referencesGautier, M., Khalil, W., Direct Calculation of minimum set of inertial Parameters of Serial Robots (1990) IEEE Trans. Robot. Autom, 6, pp. 368-373. , [CrossRef]
dc.relation.referencesShimkin, N., Feuer, A.F., Persistency of excitation in continuous-time systems (1987) Syst. Control Lett, 9, pp. 225-233. , [CrossRef]
dc.relation.referencesNancy Berryman, W.D.B.P., (2002) Joint Range of Motion and Muscle Length Testing, , 1st ed.
dc.relation.referencesSaunders: Philadelphia, PA, USA
dc.relation.referencesSerway, R.A., Jewett, J.W., Peroomian, V., (2018) Physics for Scientists and Engineers, , Saunders: Philadelphia, PA, USA
dc.relation.referencesYepes, J.C., Saldarriaga, A.J., Vélez, J.M., Pérez, V.Z., Betancur, M.J., A Hardware-in-the-loop Simulation Study of a Mechatronic System for Anterior Cruciate Ligament Injuries Rehabilitation (2017) Proceedings of the BIODEVICES 2017—10th International Conference on Biomedical Electronics and Devices, 1. , Porto, Portugal, 21–23 February
dc.relation.referencesYepes, J.C., (2018) Surface Electromyography Signal Processing Algorithm and Movement Control Algorithm for Mechatronic-Assisted Rehabilitation of Anterior Cruciate Ligament Injuries, , Ph.D. Thesis, Universidad Pontificia Bolivariana, Medellin, Colombia, [CrossRef]
dc.relation.referencesLandau, I.D., Lozano, R., M’Saad, M., Karimi, A., (2011) Discrete-Time System Models for Control, pp. 35-53. , Springer: London, UK, _2. [CrossRef]
dc.relation.referencesVakanski, A., Jun, H.P., Paul, D., Baker, R., A Data Set of Human Body Movements for Physical Rehabilitation Exercises (2018) Data, 3, p. 2. , [CrossRef] [PubMed]
dc.relation.referencesPatiño, J.G., Bravo, E.E., Perez, J.J., Perez, V., (2013) Lower Limb Rehabilitation System Controlled by Robotics, Electromyography Surface and Functional Electrical Stimulation, p. 6257. , Pan American Health Care Exchanges, PAHCE: Medellin, Colombia, [CrossRef]
dc.relation.referencesKirby, F.A., (2016) Simulación de los Algoritmos de Control de un Sistema de Rehabilitación de Miembro Inferiro (LegSys), , Master’s Thesis, Universidad Pontificia Bolivariana, Medellin, Colombia
dc.relation.referencesBustamante, S., Yepes, J.C., Pérez, V.Z., Correa, J.C., Betancur, M.J., Online Simulation of Mechatronic Neural Interface Systems: Two Case-Studies (2016) Biomedical Engineering Systems and Technologies: 9th International Joint Conference, BIOSTEC 2016, pp. 255-275. , Rome, Italy, 21–23 February Revised Selected Papers
dc.relation.referencesSpringer International Publishing: Cham, Switzerland, 2017
dc.relation.references_15. [CrossRef]
dc.relation.referencesZoss, A.B., Kazerooni, H., Chu, A., Biomechanical Design of the Berkeley Lower Extremity Exoskeletong (BLEEX) (2006) IEEE/ASME Trans. Mechatron, 11, pp. 128-138. , [CrossRef]
dc.relation.referencesVaquero, A.F., Chicharro, J.L., Fisiología del Ejercicio (2006) Fisiología del Ejercicio, p. 987. , Editorial Médica Panamericana: Bogotá, Colombia
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record