Mostrar el registro sencillo del ítem

dc.contributor.authorVergara J.M
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorCorrea J.D
dc.contributor.authorFlórez E.
dc.date.accessioned2023-10-24T19:25:13Z
dc.date.available2023-10-24T19:25:13Z
dc.date.created2022
dc.identifier.issn23522143
dc.identifier.urihttp://hdl.handle.net/11407/8054
dc.description.abstractUsing density functional theory, we present the effect of different structural defects on electronic and optical properties of blue phosphorene nanotubes of both armchair and zigzag chirality. In addition, we have considered the influence of an applied electric field on the electronic states of either pristine and defect-laden structures. The main defective features considered are double vacancies and Stone–Wales defects, although results with these imperfections are, as well, compared with those arising when single vacancies of two types are regarded. The possible transition from semiconducting to metal-like behavior induced by the applied field for large enough zigzag nanotubes is predicted. Deviations of the optical response of defective systems compared to the pristine case are mainly revealed for the visible range and above, with an evident quantitative anisotropy related to the specific polarization of the incident light: parallel or perpendicular to the nanotube growth direction. This characterization of structural defects and their effects on the optoelectronic properties of blue phosphorene nanotubes is required to define how the surface of the nanotubes could be utilized to develop new optoelectronic devices. © 2022 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132764836&doi=10.1016%2fj.cocom.2022.e00701&partnerID=40&md5=afd74fea93c25bbecf737dd42a0eee3e
dc.sourceComput. Condens. Matter
dc.sourceComputational Condensed Mattereng
dc.subjectBlue-phosphoreneeng
dc.subjectDFTeng
dc.subjectNanotubeseng
dc.subjectOptical responseeng
dc.titleImpact of different structural defects on fundamental properties of blue phosphorene nanotubeseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.cocom.2022.e00701
dc.relation.citationvolume32
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationVergara, J.M., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos C.P. 62209, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesNovoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306 (5696), pp. 666-669
dc.relation.referencesBhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Cooper, V.R., Recent advances in two-dimensional materials beyond graphene (2015) ACS Nano, 9 (12), pp. 11509-11539
dc.relation.referencesWang, L., Hu, P., Long, Y., Liu, Z., He, X., Recent advances in ternary two-dimensional materials: synthesis, properties and applications (2017) J. Mater. Chem. A, 5 (44), pp. 22855-22876
dc.relation.referencesXu, B., Qi, S., Jin, M., Cai, X., Lai, L., Sun, Z., Han, X., Peng, P., 2020 Roadmap on two-dimensional materials for energy storage and conversion (2019) Chin. Chem. Lett., 30 (12), pp. 2053-2064
dc.relation.referencesGlavin, N.R., Rao, R., Varshney, V., Bianco, E., Apte, A., Roy, A., Ringe, E., Ajayan, P.M., Emerging applications of elemental 2D materials (2020) Adv. Mater., 32 (7)
dc.relation.referencesPang, J., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Mendes, R.G., Rummeli, M.H., Applications of phosphorene and black phosphorus in energy conversion and storage devices (2018) Adv. Energy Mater., 8 (8)
dc.relation.referencesYang, A., Wang, D., Wang, X., Zhang, D., Koratkar, N., Rong, M., Recent advances in phosphorene as a sensing material (2018) Nano Today, 20, pp. 13-32
dc.relation.referencesZhu, Z., Tománek, D., Semiconducting layered blue phosphorus: a computational study (2014) Phys. Rev. Lett., 112 (17)
dc.relation.referencesZhang, W., Enriquez, H., Tong, Y., Bendounan, A., Kara, A., Seitsonen, A.P., Mayne, A.J., Oughaddou, H., Epitaxial synthesis of blue phosphorene (2018) Small, 14 (51)
dc.relation.referencesZhang, J.L., Zhao, S., Sun, S., Ding, H., Hu, J., Li, Y., Xu, Q., Su, J., Synthesis of monolayer blue phosphorus enabled by silicon intercalation (2020) ACS Nano, 14 (3), pp. 3687-3695
dc.relation.referencesSwaroop, R., Ahluwalia, P., Tankeshwar, K., Kumar, A., Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics (2017) RSC Adv., 7 (5), pp. 2992-3002
dc.relation.referencesPopov, V.N., Carbon nanotubes: properties and application (2004) Mater. Sci. Eng. R, 43 (3), pp. 61-102
dc.relation.referencesPokropivny, V.V., Non-carbon nanotubes (review). Part 2. Types and structure (2001) Powder Metall. Metal Ceram., 40 (11-12), pp. 582-594
dc.relation.referencesIvanovskii, A.L., Non-carbon nanotubes: synthesis and simulation (2002) Russ. Chem. Rev., 71 (3), pp. 175-194
dc.relation.referencesEndo, M., Hayashi, T., Kim, Y.A., Muramatsu, H., Development and application of carbon nanotubes (2006) Japan. J. Appl. Phys., 45 (6R), p. 4883
dc.relation.referencesGovindaraju, N., Singh, R., Chapter 8–synthesis and properties of boron nitride nanotubes (2014) Nanotube superfiber materials, , William Andrew Publishing Oxford
dc.relation.referencesBardhan, N.M., 30 Years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review (2017) J. Mater. Res., 32 (1), pp. 107-127
dc.relation.referencesHe, Z., Jiang, Y., Zhu, J., Li, Y., Dai, L., Meng, W., Wang, L., Liu, S., Phosphorus doped multi-walled carbon nanotubes: An excellent electrocatalyst for the VO2+/VO2+ redox reaction (2018) ChemElectroChem, 5 (17), pp. 2464-2474
dc.relation.referencesKianfar, E., Recent advances in synthesis, properties, and applications of vanadium oxide nanotube (2019) Microchem. J., 145, pp. 966-978
dc.relation.referencesDvorak, F., Zazpe, R., Krbal, M., Sopha, H., Prikryl, J., Ng, S., Hromadko, L., Macak, J.M., One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications (2019) Appl. Mater. Today, 14, pp. 1-20
dc.relation.referencesGoda, E.S., Gab-Allah, M., Singu, B.S., Yoon, K.R., Halloysite nanotubes based electrochemical sensors: A review (2019) Microchem. J., 147, pp. 1083-1096
dc.relation.referencesRahman, G., Najaf, Z., Mehmood, A., Bilal, S., Mian, S.A., Ali, G., An overview of the recent progress in the synthesis and applications of carbon nanotubes (2019) C—J. Carbon Res., 5 (1), p. 3
dc.relation.referencesSorkin, V., Zhang, Y., Mechanical properties of phosphorene nanotubes: a density functional tight-binding study (2016) Nanotechnology, 27 (39)
dc.relation.referencesHao, J., Wang, Z., Jin, Q., DFT Study of structural, elastic, electronic and dielectric properties of blue phosphorus nanotubes (2019) Sci. Rep., 9 (1), pp. 1-8
dc.relation.referencesBhuvaneswari, R., Nagarajan, V., Chandiramouli, R., Molecular interaction of oxytetracycline and sulfapyridine on blue phosphorene nanotubes: A first-principles insight (2021) Phys. Lett. A, 394
dc.relation.referencesHao, J., Wang, Z., Wang, Y., Computational investigation of lithium intercalation in single-walled zigzag blue phosphorene nanotubes (2021) Chem. Phys., 550
dc.relation.referencesJyothi, M., Nagarajan, V., Chandiramouli, R., Interaction studies of dichlobenil and isoproturon on square-octagon phosphorene nanotube based on DFT frame work (2021) Chem. Phys. Lett., 778
dc.relation.referencesMaria, J.P., Nagarajan, V., Chandiramouli, R., Chemosensing nature of black phosphorene nanotube towards C14H9Cl5 and C10H5Cl7 molecules–A first-principles insight (2021) Comput. Theor. Chem., 1196
dc.relation.referencesLi, C., Xie, Z., Chen, Z., Cheng, N., Wang, J., Zhu, G., Tunable bandgap and optical properties of black phosphorene nanotubes (2018) Materials, 11 (2), p. 304
dc.relation.referencesHu, T., Hashmi, A., Hong, J., Geometry, electronic structures and optical properties of phosphorus nanotubes (2015) Nanotechnology, 26 (41)
dc.relation.referencesKataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., Achiba, Y., Optical properties of single-wall carbon nanotubes (1999) Synth. Met., 103 (1-3), pp. 2555-2558
dc.relation.referencesWan, X., Dong, J., Xing, D., Optical properties of carbon nanotubes (1998) Phys. Rev. B, 58 (11), p. 6756
dc.relation.referencesSun, M., Chou, J.-P., Hu, A., Schwingenschlogl, U., Point defects in blue phosphorene (2019) Chem. Mater., 31 (19), pp. 8129-8135
dc.relation.referencesSafari, F., Fathipour, M., Goharrizi, A.Y., Electronic and transport properties of blue phosphorene in presence of point defects: A first-principles study (2020) Physica E, 118
dc.relation.referencesZhou, Q.-X., Wang, C.-Y., Fu, Z.-B., Tang, Y.-J., Zhang, H., Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study (2014) Front. Phys., 9 (2), pp. 200-209
dc.relation.referencesSorkin, V., Zhang, Y., Effect of vacancies on the mechanical properties of phosphorene nanotubes (2018) Nanotechnology, 29 (23)
dc.relation.referencesAierken, Y., Leenaerts, O., Peeters, F.M., Defect-induced faceted blue phosphorene nanotubes (2015) Phys. Rev. B, 92 (10), pp. 1-7
dc.relation.referencesLi, C., Xie, Z., Chen, Z., Cheng, N., Wang, J., Zhu, G., Tunable bandgap and optical properties of black phosphorene nanotubes (2018) Materials, 11 (2), p. 304
dc.relation.referencesVergara, J., Flórez, E., Mora-Ramos, M., Correa, J., Effects of single vacancy on electronic properties of blue-phosphorene nanotubes (2020) Mater. Res. Express, 7 (1)
dc.relation.referencesOspina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci., 135, pp. 43-53
dc.relation.referencesTien, L.-G., Tsai, C.-H., Li, F.-Y., Lee, M.-H., Band-gap modification of defective carbon nanotubes under a transverse electric field (2005) Phys. Rev. B, 72 (24)
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method forab initioorder-nmaterials simulation (2002) J. Phys.: Condens. Matter, 14 (11), pp. 2745-2779
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77 (18), p. 3865
dc.relation.referencesBitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 (17)
dc.relation.referencesZuluaga-Hernández, E.A., Flórez, E., Dorkis, L., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies (2020) Int. J. Quantum Chem., 120 (2)
dc.relation.referencesDresselhaus, M., Dresselhaus, G., Saito, R., Physics of carbon nanotubes (1995) Carbon, 33 (7), pp. 883-891
dc.relation.referencesChegel, R., Behzad, S., Effects of an electric field on the electronic and optical properties of zigzag boron nitride nanotubes (2011) Solid State Commun., 151 (3), pp. 259-263
dc.relation.referencesKim, C., Kim, B., Lee, S.M., Jo, C., Lee, Y.H., Effect of electric field on the electronic structures of carbon nanotubes (2001) Appl. Phys. Lett., 79 (8), pp. 1187-1189
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem