Mostrar el registro sencillo del ítem

dc.contributor.authorMosquera-Pretelt J
dc.contributor.authorMejía M.I
dc.contributor.authorMarín J.M.
dc.date.accessioned2023-10-24T19:25:15Z
dc.date.available2023-10-24T19:25:15Z
dc.date.created2022
dc.identifier.issn13880764
dc.identifier.urihttp://hdl.handle.net/11407/8058
dc.description.abstractAu/S-TiO2 and Cu/S-TiO2 materials were prepared by integrating the sol–gel/solvothermal and photodeposition methods, which constituted a straightforward and environmentally friendly synthesis route with a low time requirement and without heat treatments at high temperatures. The sol–gel/solvothermal method was used to synthesize the base material (S-TiO2) from TiOSO4 as the only S and Ti precursor, developed in a previous study. The photodeposition method was used to incorporate Au and Cu metals from chloroauric acid and copper nitrate onto S-TiO2. The materials were prepared by varying the metal load and the photodeposition time. The photocatalysts were characterized by X-ray diffraction, Raman spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray fluorescence. Formic acid was used to evaluate the photoactivity of the photodeposited materials. The results showed that the materials achieved a higher photoactivity than S-TiO2 under ultraviolet light and most of the materials, especially Cu/S-TiO2, achieved slightly higher activity under visible light. The material photodeposited with 0.5% wt of copper for 90 min had the highest photoactivity under visible light. Graphical abstract: [Figure not available: see fulltext.]. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.eng
dc.language.isoeng
dc.publisherSpringer Science and Business Media B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85144235833&doi=10.1007%2fs11051-022-05647-5&partnerID=40&md5=66e37dd5651d0d307498abb434b85e72
dc.sourceJ. Nanopart. Res.
dc.sourceJournal of Nanoparticle Researcheng
dc.subjectAu/S-TiO2eng
dc.subjectCu/S-TiO2eng
dc.subjectFormic acideng
dc.subjectNanoparticleseng
dc.subjectPhotodepositioneng
dc.subjectTitanium dioxideeng
dc.titleIntegration of the straightforward and environmentally friendly sol–gel/solvothermal and photodeposition methods as a way to prepare highly photoactive Au/S-TiO2 and Cu/S-TiO2 materialseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1007/s11051-022-05647-5
dc.relation.citationvolume24
dc.relation.citationissue12
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationMosquera-Pretelt, J., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationMejía, M.I., Grupo de Investigaciones Y Mediciones Ambientales, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationMarín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Departamento de Ingeniería Química, Facultad de Ingeniería, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.relation.referencesSerpone, N., Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? (2006) J Phys Chem B, 110, pp. 24287-24293
dc.relation.referencesSun, B., Zhou, W., Li, H., Ren, L., Qiao, P., Li, W., Fu, H., Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production (2018) Adv Mater, 30, p. 1804282
dc.relation.referencesLoryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., Suwannasri, A., Sol-gel derived mesoporous titania nanoparticles: effects of calcination temperature and alcoholic solvent on the photocatalytic behavior (2012) Ceram Int, 38, pp. 2233-2237
dc.relation.referencesNgamta, S., Boonprakob, N., Wetchakun, N., Ounnunkad, K., Phanichphant, S., Inceesungvorn, B., A facile synthesis of nanocrystalline anatase TiO2 from TiOSO4 aqueous solution (2013) Mater Lett, 105, pp. 76-79
dc.relation.referencesColón, G., Maicu, M., Hidalgo, M.C., Navío, J.A., Kubacka, A., Fernández-García, M., Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2 (2010) J Mol Catal A Chem, 320, pp. 14-18
dc.relation.referencesŽunič, V., Vukomanović, M., Škapin, S.D., Suvorov, D., Kovač, J., Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach (2014) Ultrason Sonochem, 21, pp. 367-375
dc.relation.referencesHeciak, A., Morawski, A.W., Grzmil, B., Mozia, S., Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen (2013) Appl Catal B Environ, 140-141, pp. 108-114
dc.relation.referencesMosquera-Pretelt, J., Mejia, M.I., Marín, J.M., Synthesis and characterization of photoactive S-TiO2 from TiOSO4 precursor using an integrated sol-gel and solvothermal method at low temperatures (2018) J Adv Oxid Technol, 21, pp. 1-14
dc.relation.referencesZhang, D., Wang, J., UV–visible light-activated Au@ pre-sulphated, monodisperse TiO2 aggregates for treatment of congo red and phthalylsulfathiazole (2015) J Water Process Eng, 7, pp. 187-195
dc.relation.referencesPakdel, E., Wang, J., Kashi, S., Sun, L., Wang, X., Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments (2020) Adv Colloid Interface Sci, 277, p. 102116
dc.relation.referencesRaguram, T., Rajni, K.S., Synthesis and characterisation of Cu-doped TiO2 nanoparticles for DSSC and photocatalytic applications (2022) Int J Hydrog Energy, 47, pp. 4674-4689
dc.relation.referencesNasirian, M., Bustillo-Lecompte, C.F., Mehrvar, M., Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis (2017) J Environ Manage, 196, pp. 487-498
dc.relation.referencesHe, Y., Ford, M.E., Zhu, M., Liu, Q., Wu, Z., Wachs, I.E., Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method (2016) Appl Catal B Environ, 188, pp. 123-133
dc.relation.referencesCordero-García, A., Guzmán-Mar, J.L., Hinojosa-Reyes, L., Ruiz-Ruiz, E., Hernández-Ramírez, A., Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation (2016) Ceram Int, 42, pp. 9796-9803
dc.relation.referencesEl-Yazeed, W.S.A., Ahmed, A.I., Photocatalytic activity of mesoporous WO3 /TiO2 nanocomposites for the photodegradation of methylene blue (2019) Inorg Chem Commun, 105, pp. 102-111
dc.relation.referencesKhan, H., Rigamonti, M.G., Patience, G.S., Boffito, D.C., Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark (2018) Appl Catal B Environ, 226, pp. 311-323
dc.relation.referencesPascariu, P., Cojocaru, C., Cu/TiO2 composite nanofibers with improved photocatalytic performance under UV and UV-visible light irradiation (2022) Surf Interfaces, 28, p. 101644
dc.relation.referencesZhao, J., Li, Y., Zhu, Y., Wang, Y., Wang, C., Enhanced CO2 photoreduction activity of black TiO2−coated Cu nanoparticles under visible light irradiation: role of metallic Cu (2016) Appl Catal A Gen, 510, pp. 34-41
dc.relation.referencesSakamoto, T., Nagao, D., Noba, M., Ishii, H., Konno, M., Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts (2014) Langmuir, 30, pp. 7244-7250
dc.relation.referencesVaiano, V., Iervolino, G., Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts (2016) Appl Catal B Environ, 188, pp. 134-146
dc.relation.referencesRayalu, S.S., Jose, D., Joshi, M.V., Mangrulkar, P.A., Shrestha, K., Klabunde, K., Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect (2013) Appl Catal B Environ, 142-143, pp. 684-693
dc.relation.referencesMurcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2 (2014) Appl Catal B Environ, 150-151, pp. 107-115
dc.relation.referencesOros-Ruiz, S., Zanella, R., López, R., Hernández-Gordillo, A., Gómez, R., Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition-precipitation with urea (2013) J Hazard Mater, 263, pp. 2-10
dc.relation.referencesHidalgo, M.C., Murcia, J.J., Navío, J.A., Colón, G., Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation (2011) Appl Catal A Gen, 397, pp. 112-120
dc.relation.referencesGołąbiewska, A., Lisowski, W., Jarek, M., Nowaczyk, G., Zielińska-Jurek, A., Zaleska, A., Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles (2014) Appl Surf Sci, 317, pp. 1131-1142
dc.relation.referencesGołabiewska, A., Malankowska, A., The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2 (2016) Appl Catal B Environ, 196, pp. 27-40
dc.relation.referencesTahir, M., Tahir, B., Amin, N.A.S., Alias, H., Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3 /TiO2 nanocatalyst (2016) Appl Surf Sci, 389, pp. 46-55
dc.relation.referencesXu, Y., Liang, D., Liu, M., Liu, D., Preparation and characterization of Cu2O–TiO2: efficient photocatalytic degradation of methylene blue (2008) Mater Res Bull, 43, pp. 3474-3482
dc.relation.referencesXin, B., Wang, P., Ding, D., Liu, J., Ren, Z., Fu, H., Effect of surface species on Cu-TiO2 photocatalytic activity (2008) Appl Surf Sci, 254, pp. 2569-2574
dc.relation.referencesMekasuwandumrong, O., Jantarasorn, N., Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4 (2019) Ceram Int, 45, pp. 22961-22971
dc.relation.referencesLopez, R., Gomez, R., Llanos, M.E., Photophysical and photocatalytic properties of nanosized copper-doped titania sol-gel catalysts (2009) Catal Today, 148, pp. 103-108
dc.relation.referencesCrişan, D., Drăgan, N., Structural study of sol-gel Au/TiO2 films from nanopowders (2011) Appl Surf Sci, 257, pp. 4227-4231
dc.relation.referencesIsmail, A.A., Bahnemann, D.W., Synthesis of TiO2/Au nanocomposites via sol-gel process for photooxidation of methanol (2009) J Adv Oxid Technol, 12, pp. 9-15
dc.relation.referencesYu, J., Yue, L., Liu, S., Huang, B., Zhang, X., Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres (2009) J Colloid Interface Sci, 334, pp. 58-64
dc.relation.referencesZhang, Y., Wang, T., Zhou, M., Wang, Y., Zhang, Z., Hydrothermal preparation of Ag-TiO2 nanostructures with exposed 001}/{101 facets for enhancing visible light photocatalytic activity (2017) Ceram Int, 43, pp. 3118-3126
dc.relation.referencesFitri, M.A., Ota, M., Fabrication of TiO2-graphene photocatalyst by direct chemical vapor deposition and its anti-fouling property (2017) Mater Chem Phys, 198, pp. 42-48
dc.relation.referencesDu, J., Li, X., Li, K., Gu, X., Qi, W., Zhang, K., High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition (2016) J Alloys Compd, 687, pp. 893-897
dc.relation.referencesOu, T.C., Chang, F.W., Roselin, L.S., Production of hydrogen via partial oxidation of methanol over bimetallic Au-Cu/TiO2 catalysts (2008) J Mol Catal A Chem, 293, pp. 8-16
dc.relation.referencesRismanchian, A., Chen, Y.W., Chuang, S.S.C., In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2 (2016) Catal Today, 264, pp. 16-22
dc.relation.referencesBhardwaj, S., Dogra, D., Pal, B., Singh, S., Photodeposition time dependant growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation (2019) Sol Energy, 194, pp. 618-627
dc.relation.referencesYang, Y.F., Sangeetha, P., Chen, Y.W., Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream (2009) Int J Hydrogen Energy, 34, pp. 8912-8920
dc.relation.referencesMorrison, E., Gutiérrez-Tauste, D., Domingo, C., Vigil, E., Ayllón, J.A., One step room temperature photodeposition of Cu/TiO2 composite films and its conversion to CuO/TiO2 (2009) Thin Solid Films, 517, pp. 5621-5624
dc.relation.referencesYan, H., Zhao, T., Li, X., Hun, C., Synthesis of Cu-doped nano-TiO2 by detonation method (2015) Ceram Int, 41, pp. 14204-14211
dc.relation.referencesNunes, R.M.D., Machado, B.F., Pereira, M.M., Moreno, M.J.S.M., Faria, J.L., Platinum supported on TiO2 as a new selective catalyst on heterogeneous hydrogenation of α, β-unsaturated oxosteroids (2010) J Mol Catal A Chem, 333, pp. 1-5
dc.relation.referencesMurcia, J.J., Hidalgo, M.C., Navío, J.A., Vaiano, V., Sannino, D., Ciambelli, P., Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts (2013) Catal Today, 209, pp. 164-169
dc.relation.referencesKovalevskiy, N.S., Lyulyukin, M.N., Kozlov, D.V., Selishchev, D.S., Cu-grafted TiO2 photocatalysts: effect of Cu on the action spectrum of composite materials (2021) Mendeleev Comm, 31, pp. 644-646
dc.relation.referencesPanahi, H.K.S., Dehhaghi, M., Bioethanol production from food wastes rich in carbohydrates (2022) Curr Opin Food Sci, 43, pp. 71-81
dc.relation.referencesZhou, W., Sun, F., Pan, K., Tian, G., Jiang, B., Ren, Z., Tian, C., Fu, H., Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance (2011) Adv Funct Mater, 21, pp. 1922-1930
dc.relation.referencesLuttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M., Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 films (2014) Sci Rep, 4, p. 4043
dc.relation.referencesLaguna, O.H., Murcia, J.J., Rojas, H., Jaramillo-Paez, C., Navío, J.A., Hidalgo, M.C., Differences in the catalytic behavior of au-metalized TiO2 systems during phenol photo-degradation and CO oxidation (2019) Catalysts, 397, pp. 112-120
dc.relation.referencesMurcia, J.J., Hidalgo, M.C., Navío, J.A., Araña, J., Doña-Rodríguez, J.M., Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition (2015) Appl Catal B Environ, 179, pp. 305-312
dc.relation.referencesZou, Z., Zhou, Z., Wang, H., Yang, Z., Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation (2017) J Phys Chem Solids, 100, pp. 71-77
dc.relation.referencesPham, T.T., Nguyen-Huy, C., Cu-doped TiO2/reduced graphene oxide thin-film photocatalysts: effect of Cu content upon methylene blue removal in water (2015) Ceram Int, 41, pp. 11184-11193
dc.relation.referencesGu, Y., Li, C., Bai, J., Wang, J., Ma, T., One-step solvothermal synthesis of Au-TiO2 loaded electrospun carbon fibers to enhance photocatalytic activity (2016) Vacuum, 130, pp. 1-6
dc.relation.referencesGolobostanfard, M.R., Abdizadeh, H., Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film (2013) Physica B, 413, pp. 40-46
dc.relation.referencesLi, L., Zhang, W., Chen, W., Li, P., Effects of reagent gas composition on the morphology and optical properties of Cu2S nanowire arrays (2016) J Alloys Compd, 662, pp. 263-267
dc.relation.referencesZhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., Raman scattering study on anatase TiO2 nanocrystals (2000) J Phys D Appl Phys, 33, pp. 912-916
dc.relation.referencesZhao, Z., Zhu, X., Zuo, M., Xu, J., Wang, Y., Dealloying induced plasmonic Au nanoparticles modified mesoporous TiO2 for enhanced visible light photocatalysis (2016) Cryst Eng Comm, 18, pp. 1636-1644
dc.relation.referencesCampos, C.S., Spada, E.R., de Paula, F.R., Reis, F.T., Faria, R.M., Sartorelli, M.L., Raman and XRD study on brookite-anatase coexistence in cathodic electrosynthesized titania (2011) J Raman Spectrosc, 43, pp. 433-438
dc.relation.referencesVenkatasubbu, G.D., Ramakrishnan, V., Sasirekha, V., Ramasamy, S., Kumar, J., Influence of particle size on the phonon confinement of TiO2 nanoparticles (2012) J Exp Nanosci, 9, pp. 661-668
dc.relation.referencesHinojosa-Reyes, M., Camposeco-Solís, R., Zanella, R., Rodríguez González, V., Hydrogen production by tailoring the brookite and Cu2O ratio of sol-gel Cu-TiO2 photocatalysts (2017) Chemosphere, 184, pp. 992-1002
dc.relation.referencesSenthilkumar, M., Mary, C.I., Manobalaji, G., Babu, S.M., Ligand assisted tunability of morphological and optical properties of copper sulfide nanocrystals (2019) Mater Sci Semicond Process, 104, pp. 104685-104692
dc.relation.referencesHuse, N.P., Dive, A.S., Gattu, K.P., Sharma, R., An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application (2017) Mater Sci Semicond Process, 67, pp. 62-68
dc.relation.referencesPalomino-Merino, R., Trejo-Garcia, P., Portillo-Moreno, O., Jimenez-Sandoval, S., Tomas, S.A., Zelaya-Angel, O., Lozada-Morales, R., Castaño, V.M., Red shifts of the Eg(1) Raman mode of nanocrystalline TiO2: Er monoliths grown by sol–gel process (2015) Opt Mater, 46, pp. 345-349
dc.relation.referencesAcik, I.O., Oyekoya, N.G., Plasmonic TiO2: Au composite layers deposited in situ by chemical spray pyrolysis (2015) Surf Coat Technol, 271, pp. 27-31
dc.relation.referencesOros-Ruiz, S., Zanella, R., Prado, B., Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25 (2013) J Hazard Mater, 263, pp. 28-35
dc.relation.referencesVan Der Stam, W., Gudjonsdottir, S., Evers, W.H., Houtepen, A.J., Switching between plasmonic and fluorescent copper sulfide nanocrystals (2017) J Am Chem Soc, 139, pp. 13208-13217
dc.relation.referencesTian, B., Zhang, J., Tong, T., Chen, F., Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange (2008) Appl Catal B Environ, 79, pp. 394-401
dc.relation.referencesHernández-Ramírez, E., Wang, J.A., Chen, L.F., Valenzuela, M.A., Dalai, A.K., Partial oxidation of methanol catalyzed with Au/TiO2, Au/ZrO2 and Au/ZrO2-TiO2 catalysts (2017) Appl Surf Sci, 399, pp. 77-85
dc.relation.referencesValencia, S., Marin, J.M., Restrepo, G., Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment (2010) Open Mater Sci J, 4, pp. 9-14
dc.relation.referencesCarp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide (2004) Prog Solid State Chem, 32, pp. 33-177
dc.relation.referencesRaj, K.J.A., Shanmugam, R., Mahalakshmi, R., Viswanathan, B., XPS and IR spectral studies on the structure of phosphate and sulphate modified titania - a combined DFT and experimental study (2010) Indian J Chem, 49A, pp. 9-17. , http://nopr.niscpr.res.in/handle/123456789/7185
dc.relation.referencesHan, C., Andersen, J., Likodimos, V., Falaras, P., Linkugel, J., Dionysiou, D., The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment (2014) Catal Today, 224, pp. 132-139
dc.relation.referencesXiu, Z., Guo, M., Zhao, T., Pan, K., Xing, Z., Li, Z., Zhou, W., Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications (2020) J Chem Eng, 382, p. 123011
dc.relation.referencesMcManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J.D., Morris, M.A., A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity (2015) J Mol Catal A Chem, 406, pp. 51-57
dc.relation.referencesHan, C., Pelaez, M., Dionysiou, D., Innovative visible light-activated sulfur doped TiO2 films for water treatment (2011) Appl Catal B Environ, 107, pp. 77-87
dc.relation.referencesRengifo-Herrera, J.A., Kiwi, J., Pulgarin, C., N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation (2009) J Photochem Photobiol A Chem, 205, pp. 109-115
dc.relation.referencesHo, W., Yu, J.C., Lee, S., Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity (2006) J Solid State Chem, 179, pp. 1171-1176
dc.relation.referencesLi, Z., Li, H., Wang, S., Yang, F., Zhou, W., Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production (2022) Chem Eng J, 427, p. 131830
dc.relation.referencesShu, Z., Cai, Y., Ji, J., Tang, C., Yu, S., Zou, W., Pt Deposites on TiO2 for photocatalytic H2 evolution: Pt is not only the cocatalyst, but also the defect repair agent (2020) Catalysts, 10, p. 1047
dc.relation.referencesHidalgo, M.C., Maicu, M., Navio, J.A., Colon, G., Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications (2009) J Phys Chem C, 113, pp. 12840-12847
dc.relation.referencesOros-Ruiz, S., Zanella, R., Collins, S.E., Hernandez-Gordillo, A., Gomez, R., Photocatalytic hydrogen production by Au-MxOy (M=Ag, Cu, Ni) catalysts supported on TiO2 (2014) Catal Commun, 47, pp. 1-6
dc.relation.referencesKozhevnikova, N.S., Maskaeva, L.N., Markov, V.P., Lipina, O.A., Chufarov, A.U., Kuznetsov, M.V., One-pot green synthesis of copper sulfide (I) thin films with p-type conductivity (2020) Mater Chem Phys, 242, pp. 122447-122452
dc.relation.referencesLiu, Y., Liu, M., Swihart, M.T., Reversible crystal phase interconversion between covellite CuS and high chalcocite Cu2S nanocrystals (2017) Chem Mater, 29, pp. 4783-4791
dc.relation.referencesZhao, Y., Pan, H., Lou, Y., Qiu, X., Zhu, J., Burda, C., Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides (2009) J Am Chem Soc, 131, pp. 4253-4261
dc.relation.referencesFernandes Machado, N.R.C., Santana, V.S., Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25 (2005) Catal Today, 107-108, pp. 595-601
dc.relation.referencesZhou, M., Zhang, J., Cheng, B., Yu, H., Enhancement of visible-light photocatalytic activity of Mesoporous Au-TiO2 nanocomposites by surface plasmon resonance (2011) Int J Photoenergy, 2012, p. 532843
dc.relation.referencesAraña, J., Garriga, C., Doña-Rodriguez, J.M., Gonzalez-Díaz, O., Herrera-Melián, J.A., Perez-Peña, J., FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes (2004) Appl Surf Sci, 239, pp. 60-71
dc.relation.referencesMiller, K., Lee, C.W., Falconer, J.L., Medlin, J.W., Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2 (2010) J Catal, 275, pp. 294-299
dc.relation.referencesKhan, M.M., Lee, J., Cho, M.H., Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect (2014) J Ind Eng Chem, 20, pp. 1584-1590
dc.relation.referencesFarooq, M.H., Aslam, I., Shuaib, A., Anam, H.S., Rizwan, M., Kanwal, Q., Band gap engineering for improved photocatalytic performance of CuS/TiO2 composites under solar light irradiation (2019) Bull Chem Soc Ethiop, 33, pp. 561-571
dc.relation.referencesJanczareck, M., Kowalska, E., On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems (2017) Catalysts, 7, p. 317
dc.relation.referencesXing, J., Chen, Z.P., Xiao, F.Y., Ma, X.Y., Wen, C.Z., Li, Z., Yang, H.G., Cu-Cu2O-TiO2 nanojunction systems with an unusual electron–hole transportation pathway and enhanced photocatalytic properties (2013) Chem Asian J, 8, pp. 1265-1270
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem