Mostrar el registro sencillo del ítem

dc.contributor.authorForgionny A
dc.contributor.authorAcelas N.Y
dc.contributor.authorOcampo-Pérez R
dc.contributor.authorPadilla-Ortega E
dc.contributor.authorPérez S
dc.contributor.authorFlórez E.
dc.date.accessioned2023-10-24T19:25:25Z
dc.date.available2023-10-24T19:25:25Z
dc.date.created2022
dc.identifier.issn22151532
dc.identifier.urihttp://hdl.handle.net/11407/8070
dc.description.abstractIn this work, a deeper comprehension of the adsorption phenomena for Cd2+ and Cu2+ occurring in mono- and multicomponent systems on an adsorbent material obtained from cedar sawdust was accomplished by using spectroscopic characterization, and computational tools. The adsorbents were prepared by a simple calcination process at 300, 400, and 500 °C or pyrolysis at 300 °C. The experimental results showed that the adsorption capacity of the CS-C-400 adsorbent is higher for Cd2+ (36 mg g−1) than Cu2+ (15 mg g−1) ions in monocomponent systems (50 mg of adsorbent, 50 mL of solution, pH = 5, 25 °C, 200 rpm, and 72 h). In contrast, the trend for the adsorption capacity was Cu2+ > Cd2+ in most of the concentrations for multicomponent systems, due to that Cu2+ showed greater antagonism to Cd2+ during the competitive adsorption (qCd2+ was 96 % reduced). Computational results correlated well with the experimental ones and evidenced the occurrence of complexation interactions between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, ester, and ether) onto the adsorbent surface, as was also proposed through spectroscopy results. Computational and experimental results indicate that Cd2+ and Cu2+ adsorption on the adsorbent surface is governed by the occurrence of complexation, and π-cation interaction for both ions, while ionic exchange plays a significant role in Cd2+ adsorption. © 2022 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132810612&doi=10.1016%2fj.enmm.2022.100715&partnerID=40&md5=ad7e9b95cbbe12c53d5943e7fc9361c0
dc.sourceEnviron. Nanotechnol. Monit. Manag.
dc.sourceEnvironmental Nanotechnology, Monitoring and Managementeng
dc.subjectAdsorbate-adsorbent interactionseng
dc.subjectAdsorptioneng
dc.subjectBinaryeng
dc.subjectCadmiumeng
dc.subjectCoppereng
dc.subjectMonocomponenteng
dc.titleMechanism adsorption analysis during the removal of Cd2+ and Cu2+ onto cedar sawdust via experiment coupled with theoretical calculation: Mono- and multicomponent systemseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.enmm.2022.100715
dc.relation.citationvolume18
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationForgionny, A., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationAcelas, N.Y., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationPadilla-Ortega, E., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationPérez, S., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.relation.referencesAksu, Z., Açikel, Ü., Kabasakal, E., Tezer, S., Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge (2002) Water Res., 36, pp. 3063-3073
dc.relation.referencesBandara, T., Xu, J., Potter, I.D., Franks, A., Chathurika, J.B.A.J., Tang, C., Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes (2020) Chemosphere, 254
dc.relation.referencesBiesinger, M.C., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn (2010) Appl. Surf. Sci., 257, pp. 887-898
dc.relation.referencesBohli, T., Ouederni, A., Villaescusa, I., Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions (2017) Euro-Mediterranean J. Environ. Integr., 2, pp. 1-15
dc.relation.referencesÇay, S., Uyanik, A., Özaşik, A., Single and binary component adsorption of copper(II) andcadmium(II) from aqueous solutions using tea-industry waste (2004) Sep. Purif. Technol., 38, pp. 273-280
dc.relation.referencesChakraborty, R., Asthana, A., Singh, A.K., Jain, B., Susan, A.B.H., Adsorption of heavy metal ions by various low-cost adsorbents: a review (2022) Int. J. Environ. Anal. Chem., 102, pp. 342-379
dc.relation.referencesChang, R., Sohi, S.P., Jing, F., Liu, Y., Chen, J., A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation (2019) Environ. Pollut., 254
dc.relation.referencesCherono, F., Mburu, N., Kakoi, B., Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber (2021) Heliyon, 7, p. e08254
dc.relation.referencesChoy, K.K.H., Porter, J.F., McKay, G., Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon (2000) J. Chem. Eng. Data, 45, pp. 575-584
dc.relation.referencesDye, M.O., Danish, M., Hashim, R., Ibrahim, M.N.M., Characterization of physically activated Acacia mangium wood-based carbon for the removal of methyl orange dye (2013) BioResources, 8, pp. 4323-4339
dc.relation.referencesEl Hajam, M., Idrissi Kandri, N., Harrach, A., El khomsi, A., Zerouale, A., Physicochemical characterization of softwood waste “Cedar” and hardwood waste “Mahogany”: Comparative study (2019) Mater. Today Proc., 13, pp. 803-811
dc.relation.referencesEl Hajam, M., Kandri, N.I., Plavan, G.I., Harrath, A.H., Mansour, L., Boufahja, F., Zerouale, A., Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs (2020) J. King Saud Univ. - Sci., 32, pp. 2176-2189
dc.relation.referencesForgionny, A., Acelas, N.Y., Jimenez-orozco, C., Flórez, E., Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights (2020) Int. J. Quantum Chem., 120, pp. 1-11
dc.relation.referencesForgionny, A., Acelas, N.Y., Ocampo-Pérez, R., Padilla-Ortega, E., Leyva-Ramos, R., Flórez, E., Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study (2021) Environ. Sci. Pollut. Res., 28, pp. 23204-23219
dc.relation.referencesFreundlich, H.M.F., über die adsorption in losungen (Adsorption in Solution) (1907) Zeitschrift für Phys. Chemie, 57, pp. 385-490
dc.relation.references(2009), Gaussian 09, R.A. 0., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.E.S., M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.M., G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P.H., A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.H., M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.N., Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.B., K. N. Kudin, V. N. Staroverov, R. Kobayashi, J.N., K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.T., M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.B.C., V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.S., O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W.O., R. L. Martin, K. Morokuma, V. G. Zakrzewski, G.A.V., P. Salvador, J. J. Dannenberg, S. Dapprich, A.D.D., O. Farkas, J. B. Foresman, J. V. Ortiz, J.C., and D. J. Fox, Gaussian, Inc., Wallingford CT, n.d. Gaussian 09, Revision A.01
dc.relation.referencesGirish, C.R., Multicomponent adsorption and the interaction between the adsorbent and the adsorbate: A review (2018) Int. J. Mech. Eng. Technol., 9, pp. 177-188
dc.relation.referencesGirish, C.R., Various isotherm models for multicomponent adsorption: A review (2017) Int. J. Civ. Eng. Technol., 8, pp. 80-86
dc.relation.referencesHantsche, H., (1993), High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Beamson, G.
dc.relation.referencesBriggs, D.). J. Chem. Educ. 70, A25. 10.1021/ed070pA25.5
dc.relation.referencesIvanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J. Water Process Eng., 32
dc.relation.referencesIvanets, A.I., Srivastava, V., Kitikova, N.V., Shashkova, I.L., Sillanpää, M., Non-apatite Ca-Mg phosphate sorbent for removal of toxic metal ions from aqueous solutions (2017) J. Environ. Chem. Eng., 5, pp. 2010-2017
dc.relation.referencesJaouadi, M., Characterization of activated carbon, wood sawdust and their application for boron adsorption from water (2021) Int. Wood Prod. J., 12, pp. 22-33
dc.relation.referencesJoseph, L., Jun, B.M., Flora, J.R.V., Park, C.M., Yoon, Y., Removal of heavy metals from water sources in the developing world using low-cost materials: A review (2019) Chemosphere, 229, pp. 142-159
dc.relation.referencesKeith, T.A., Frisch, M.J., (2009), pp. 22-35. , Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation, in: American Chemical Society (Ed.), Modeling the Hydrogen Bond. Washington, 10.1021/bk-1994-0569.ch003
dc.relation.referencesKoopal, L., Tan, W., Avena, M., Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding (2020) Adv. Colloid Interface Sci.
dc.relation.referencesKrivoshapkin, P.V., Ivanets, A.I., Torlopov, M.A., Mikhaylov, V.I., Srivastava, V., Sillanpää, M., Prozorovich, V.G., Krivoshapkina, E.F., Nanochitin/manganese oxide-biodegradable hybrid sorbent for heavy metal ions (2019) Carbohydr. Polym., 210, pp. 135-143
dc.relation.referencesKumar, S., Zafar, M., Prajapati, J.K., Kumar, S., Kannepalli, S., Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution (2011) J. Hazard. Mater., 185, pp. 287-294
dc.relation.referencesLangmuir, I., The constitution and fundamental properties of solids and liquids. Part I (1916) Solids. J. Am. Chem. Soc., 38, pp. 2221-2295
dc.relation.references(2015), pp. 33-69. , Lima, É.C., Adebayo, M.A., Machado, F.M. Kinetic and equilibrium models of adsorption, in: Carbon Nanostructures. Springer International Publishing, 10.1007/978-3-319-18875-1_3
dc.relation.referencesLong, M., Jiang, H., Li, X., Biosorption of Cu2+, Pb2+, Cd2+ and their mixture from aqueous solutions by Michelia figo sawdust (2021) Sci. Rep., 11
dc.relation.referencesMa, J., Li, T., Liu, Y., Cai, T., Wei, Y., Dong, W., Chen, H., Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems (2019) Bioresour. Technol., 290
dc.relation.referencesMalik, J.A., (2022), Advances in Bioremediation and Phytoremediation for Sustainable Soil Management, Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer International Publishing, Cham. 10.1007/978-3-030-89984-4
dc.relation.referencesMallakpour, S., Sirous, F., Hussain, C.M., Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies (2021) Adv. Colloid Interface Sci., 295
dc.relation.referencesMartínez-Costa, J.I., Leyva-Ramos, R., Padilla-Ortega, E., Aragón-Piña, A., Carrales-Alvarado, D.H., Antagonistic, synergistic and non-interactive competitive sorption of sulfamethoxazole-trimethoprim and sulfamethoxazole-cadmium (ii) on a hybrid clay nanosorbent (2018) Sci. Total Environ., 640-641, pp. 1241-1250
dc.relation.referencesMcKay, G., Al Duri, B., Prediction of multicomponent adsorption equilibrium data using empirical correlations (1989) Chem. Eng. J., 41, pp. 9-23
dc.relation.referencesMedellin-Castillo, N.A., Padilla-Ortega, E., Regules-Martínez, M.C., Leyva-Ramos, R., Ocampo-Pérez, R., Carranza-Alvarez, C., Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste (2017) Sustain. Environ. Res., 27, pp. 61-69
dc.relation.referencesMeseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., Vukelic, N., Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater (2019) J. Ind. Eng. Chem., 75, pp. 246-252
dc.relation.referencesMohan, D., Pittman, C.U., Steele, P.H., Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent (2006) J. Colloid Interface Sci., 297, pp. 489-504
dc.relation.referencesMwango, A., Kambole, C., Engineering Characteristics and Potential Increased Utilisation of Sawdust Composites in Construction—A Review (2019) J. Build. Constr. Plan. Res., 7, pp. 59-88
dc.relation.referencesNgernyen, Y., Tangsathitkulchai, C., Tangsathitkulchai, M., Porous properties of activated carbon produced from Eucalyptus and Wattle wood by carbon dioxide activation (2006) Korean J. Chem. Eng., 23, pp. 1046-1054
dc.relation.referencesPadilla-Ortega, E., Leyva-Ramos, R., Flores-Cano, J.V., Binary adsorption of heavy metals from aqueous solution onto natural clays (2013) Chem. Eng. J., 225, pp. 535-546
dc.relation.referencesPark, J., Sik, Y., Kim, S., Cho, J., Heo, J., Delaune, R.D., Seo, D., Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions (2016) Chemosphere, 142, pp. 77-83
dc.relation.referencesQiu, B., Tao, X., Wang, H., Li, W., Ding, X., Chu, H., Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review (2021) J. Anal. Appl. Pyrolysis, 155
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations (2020) J. Environ. Chem. Eng., 8
dc.relation.referencesRana, R., Langenfeld-Heyser, R., Finkeldey, R., Polle, A., FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae (2010) Wood Sci. Technol., 44, pp. 225-242
dc.relation.referencesRonda, A., Martín-Lara, M.A., Dionisio, E., Blázquez, G., Calero, M., Effect of lead in biosorption of copper by almond shell (2013) J. Taiwan Inst. Chem. Eng., 44, pp. 466-473
dc.relation.referencesRoy, A., Bharadvaja, N., Efficient removal of heavy metals from artificial wastewater using biochar (2021) Environ. Nanotechnology, Monit. Manag., 16
dc.relation.referencesSaleh, T.A., Mustaqeem, M., Khaled, M., Water treatment technologies in removing heavy metal ions from wastewater: A review (2022) Environ. Nanotechnology, Monit. Manag., 17
dc.relation.referencesShukla, P.R., Chong, S., Pan, G.T., Wang, S., Ang, M., Rudolph, V., Adsorption of phenolic contaminants from water on activated carbon: An insight into single and multicomponent adsorption isotherms (2019) Asia-Pacific J. Chem. Eng., 14, pp. 1-14
dc.relation.referencesTran, H.N., Nguyen, H.C., Woo, S.H., Nguyen, T.V., Vigneswaran, S., Hosseini-Bandegharaei, A., Rinklebe, J., Chao, H.P., Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review (2019) Crit. Rev. Environ. Sci. Technol., 49, pp. 2155-2219
dc.relation.referencesTreybal, R.E., Mass-Transfer Operations, Third (1981), Edit. ed. Mc Graw Hill International Book Company Singapore
dc.relation.referencesVerma, A., Agarwal, M., Sharma, S., Singh, N., Competitive removal of cadmium and lead ions from synthetic wastewater using Kappaphycus striatum (2021) Environ. Nanotechnology, Monit. Manag., 15
dc.relation.referencesVieira, Y., dos Santos, J.M.N., Georgin, J., Oliveira, M.L.S., Pinto, D., Dotto, G.L., An overview of forest residues as promising low-cost adsorbents (2021) Gondwana Res
dc.relation.referencesWang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., Si, Q., Ren, N., Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism (2019) Water Res., 160, pp. 405-414
dc.relation.referencesXu, F., Yu, J., Tesso, T., Dowell, F., Wang, D., Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review (2013) Appl. Energy, 104, pp. 801-809
dc.relation.referencesYao, N., Li, C., Yu, J., Xu, Q., Wei, S., Tian, Z., Yang, Z., Shen, J., Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water (2020) Sep. Purif. Technol., 236
dc.relation.referencesYin, G., Song, X., Tao, L., Sarkar, B., Sarmah, A.K., Zhang, W., Lin, Q., Wang, H., Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(II) from aqueous solutions (2020) Chem. Eng. J., 389
dc.relation.referencesZhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: Experiments and theoretical calculation (2019) Chemosphere, 222, pp. 184-194
dc.relation.referencesZheng, Q., Yang, L., Song, D., Zhang, S., Wu, H., Li, S., Wang, X., High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil (2020) Chemosphere, 259
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem