Mostrar el registro sencillo del ítem

dc.contributor.authorFlórez E
dc.contributor.authorGómez S
dc.contributor.authorAcelas N
dc.contributor.authorHadad C
dc.contributor.authorRestrepo A.
dc.date.accessioned2023-10-24T19:25:26Z
dc.date.available2023-10-24T19:25:26Z
dc.date.created2022
dc.identifier.issn14394235
dc.identifier.urihttp://hdl.handle.net/11407/8074
dc.description.abstractThe effects of the formal charge in the stability and bonding of water cavities when solvating a cation are studied here using [X(H2O)20]q+ clusters starting with the well known 512 isomer of (water)20, placing a single mono, di, or trivalent Xq+ cation at the interior, and then optimizing and characterizing the resulting clusters. Highly correlated interaction and deformation energies are calculated using the CCSD(T)−DLPNO formalism. Bonding interactions are characterized using the tools provided by the quantum theory of atoms in molecules, natural bond orbitals, and non–covalent surfaces. Our results indicate that water to water hydrogen bonds are sensibly strengthened resulting in strong cooperative effects, which amount to (Formula presented.) kcal/mol per hydrogen bond in the bare cavity and to larger values for the systems including the cations. Approximate encapsulation, that is, surrounding the cation by a network of hydrogen bonds akin to the well known methane clathrate seems to be preferred by cations with smaller charge densities while microsolvation, that is, cluster structures having explicit X⋯O contacts seem to be preferred by cations with larger charge densities which severely deform the cavity. © 2022 Wiley-VCH GmbH.eng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85138297887&doi=10.1002%2fcphc.202200456&partnerID=40&md5=132b524e0d36162b6f8f69f7d1b317d5
dc.sourceChemPhysChem
dc.sourceChemPhysChemeng
dc.subjectBonding interactionseng
dc.subjectEncapsulationeng
dc.subjectMicrosolvationeng
dc.subjectNBOeng
dc.subjectNCIeng
dc.subjectQTAIMeng
dc.subjectWater clusterseng
dc.titleMicrosolvation versus Encapsulation in Mono, Di, and Trivalent Cationseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1002/cphc.202200456
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30–65, Medellín, 050026, Colombia
dc.affiliationGómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationAcelas, N., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30–65, Medellín, 050026, Colombia
dc.affiliationHadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medell'ın, Colombia
dc.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medell'ın, Colombia
dc.relation.referencesHünenberger, M.R., (2011) Single-Ion Solvation: Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities, 3. , Royal Society of Chemistry
dc.relation.referencesMarcus, Y., (2015) Ions in Solution and Their Solvation, , John Wiley & Sons
dc.relation.referencesSteel, E., Merz, K.M., Jr., Selinger, A., Castleman, A., Jr., (1995) J. Phys. Chem., 99, pp. 7829-7836
dc.relation.referencesCooper, R.J., Chang, T.M., Williams, E.R., (2013) J. Phys. Chem. A, 117, pp. 6571-6579
dc.relation.referencesHartke, B., Charvat, A., Reich, M., Abel, B., (2002) J. Chem. Phys., 116, pp. 3588-3600
dc.relation.referencesKhan, A., (2004) Chem. Phys. Lett., 388, pp. 342-347
dc.relation.referencesStachl, C.N., Williams, E.R., (2020) J. Phys. Chem. Lett., 11, pp. 6127-6132
dc.relation.referencesHadad, C., Florez, E., Acelas, N., Merino, G., Restrepo, A., (2019) Int. J. Quantum Chem., 119
dc.relation.referencesIbargüen, C., Manrique-Moreno, M., Hadad, C., David, J., Restrepo, A., (2013) Phys. Chem. Chem. Phys., 15, pp. 3203-3211
dc.relation.referencesRojas-Valencia, N., Ibargüen, C., Restrepo, A., (2015) Chem. Phys. Lett., 635, pp. 301-305
dc.relation.referencesRojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061
dc.relation.referencesUribe, L., Gómez, S., Giovannini, T., Egidi, F., Restrepo, A., (2021) Phys. Chem. Chem. Phys., 23, pp. 14857-14872
dc.relation.referencesAcelas, N., Flórez, E., Hadad, C., Merino, G., Restrepo, A., (2019) J. Phys. Chem. A, 123, pp. 8650-8656
dc.relation.referencesDe, S., Ali, S.M., Ali, A., Gaikar, V., (2009) Phys. Chem. Chem. Phys., 11, pp. 8285-8294
dc.relation.referencesGonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., (2013) J. Mol. Model., 19, pp. 1763-1777
dc.relation.referencesZapata-Escobar, A., Manrique-Moreno, M., Guerra, D., Hadad, C., Restrepo, A., (2014) J. Chem. Phys., 140, p. 05B. , 611
dc.relation.referencesRomero, J., Reyes, A., David, J., Restrepo, A., (2011) Phys. Chem. Chem. Phys., 13, pp. 15264-15271
dc.relation.referencesRamírez-Rodríguez, F., Restrepo, A., (2021) Chem. Phys., 544
dc.relation.referencesFlórez, E., Acelas, N., Ibargüen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., (2016) RSC Adv., 6, pp. 71913-71923
dc.relation.referencesFlórez, E., Maldonado, A.F., Aucar, G.A., David, J., Restrepo, A., (2016) Phys. Chem. Chem. Phys., 18, pp. 1537-1550
dc.relation.referencesFlórez, E., Acelas, N., Ramírez, F., Hadad, C., Restrepo, A., (2018) Phys. Chem. Chem. Phys., 20, pp. 8909-8916
dc.relation.referencesChamorro, Y., Flórez, E., Maldonado, A., Aucar, G., Restrepo, A., (2021) Int. J. Quantum Chem., 121
dc.relation.referencesVelásquez, A., Chamorro, Y., Maldonado, A., Aucar, G., Restrepo, A., (2021) Int. J. Quantum Chem., 121
dc.relation.referencesGómez, S., Rojas-Valencia, N., Giovannini, T., Restrepo, A., Cappelli, C., (2022) Molecules, 27, p. 442
dc.relation.referencesMarcus, Y., (2009) Chem. Rev., 109, pp. 1346-1370
dc.relation.referencesCollins, K.D., Washabaugh, M.W., (1985) Q. Rev. Biophys., 18, pp. 323-422
dc.relation.referencesWang, J., Dolyniuk, J.-A., Kovnir, K., (2018) Acc. Chem. Res., 51, pp. 31-39
dc.relation.referencesKumar, P., Mishra, B.K., Sathyamurthy, N., (2014) Comput. Theor. Chem., 1029, pp. 26-32
dc.relation.referencesWang, K., Li, W., Li, S., (2014) J. Chem. Theory Comput., 10, pp. 1546-1553
dc.relation.referencesBecke, A.D., (1997) J. Chem. Phys., 107, pp. 8554-8560
dc.relation.referencesGrimme, S., (2006) J. Comput. Chem., 27, pp. 1787-1799
dc.relation.referencesWeigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
dc.relation.referencesWeigend, F., (2006) Phys. Chem. Chem. Phys., 8, pp. 1057-1065
dc.relation.referencesNeese, F., (2012) Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, pp. 73-78
dc.relation.referencesRiplinger, C., Neese, F., (2013) J. Chem. Phys., 138
dc.relation.referencesRiplinger, C., Sandhoefer, B., Hansen, A., Neese, F., (2013) J. Chem. Phys., 139
dc.relation.referencesBader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford Univ. press Oxford
dc.relation.referencesPopelier, P.L., (2000) Atoms in Molecules: An Introduction, , Prentice Hall, London
dc.relation.referencesGrabowski, S.J., (2011) Chem. Rev., 111, pp. 2597-2625
dc.relation.referencesReed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, pp. 899-926
dc.relation.referencesWeinhold, F., Landis, C., Glendening, E., (2016) Int. Rev. Phys. Chem., 35, pp. 399-440
dc.relation.referencesWeinhold, F., Landis, C.R., Discovering Chemistry with Natural Bond Orbitals, Wiley-VCH, Hoboken NJ (2012) 319Pp
dc.relation.referencesJohnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., Yang, W., (2010) J. Am. Chem. Soc., 132, pp. 6498-6506
dc.relation.referencesDilabio, G.A., Otero-De-La Roza, A., Rev. Comput. Chem., John Wiley & Sons, Ltd (2016) Chapter, 1, pp. 1-97
dc.relation.referencesGómez, S., Ramírez-Malule, H., Cardona-G, W., Osorio, E., Restrepo, A., (2020) J. Phys. Chem. A, 124, pp. 9413-9426
dc.relation.referencesGómez, S.A., Rojas-Valencia, N., Gómez, S., Egidi, F., Cappelli, C., Restrepo, A., (2021) ChemBioChem, 22, pp. 724-732
dc.relation.referencesGómez, S.A., Rojas-Valencia, N., Gómez, S., Cappelli, C., Restrepo, A., (2022) ChemBioChem, 23
dc.relation.referencesGómez, S., Rojas-Valencia, N., Gómez, S.A., Cappelli, C., Merino, G., Restrepo, A., (2021) Chem. Sci., 12, pp. 9233-9245
dc.relation.referencesGreen, J.R., Dunbar, R.C., (2011) J. Phys. Chem. A, 115, pp. 4968-4975
dc.relation.referencesShannon, R.T., Prewitt, C.T., (1969) Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 25, pp. 925-946
dc.relation.referencesShannon, R.T., Prewitt, C., (1970) Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 26, pp. 1046-1048
dc.relation.referencesShannon, R.D., (1976) Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 32, pp. 751-767
dc.relation.referencesRahm, M., Hoffmann, R., Ashcroft, N., (2016) Chem. Eur. J., 22, pp. 14625-14632
dc.relation.references(2009) Gaussian 09 Revision E.01. Gaussian Inc. Wallingford CT, , M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox et
dc.relation.referencesGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , Theoretical Chemistry Institute, University of Wisconsin, Madison
dc.relation.referencesKeith, T., (2019) AIMALL (Version 19.10.12), , TK Gristmill Software, Overland Park KS, USA, aim.tkgristmill. com
dc.relation.referencesContreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W., (2011) J. Chem. Theory Comput., 7, pp. 625-632
dc.relation.referencesMiyazaki, M., Fujii, A., Ebata, T., Mikami, N., (2004) Science, 304, pp. 1134-1137
dc.relation.referencesShin, J.-W., Hammer, N.I., Diken, E.G., Johnson, M.A., Walters, R.S., Jaeger, T.D., Duncan, M.A., Jordan, K.D., (2004) Science, 304, pp. 1137-1140
dc.relation.referencesMancinelli, R., Botti, A., Bruni, F., Ricci, M., Soper, A., (2007) J. Phys. Chem. B, 111, pp. 13570-13577
dc.relation.referencesGómez, S., Nafziger, J., Restrepo, A., Wasserman, A., (2017) J. Chem. Phys., 146
dc.relation.referencesFlórez, E., Acelas, N., Gómez, S., Hadad, C., Restrepo, A., (2022) ChemPhysChem, 23
dc.relation.referencesReed, A.E., Weinhold, F., (1983) J. Chem. Phys., 78, pp. 4066-4073
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem