Show simple item record

dc.contributor.authorTiwari A
dc.contributor.authorCassani R
dc.contributor.authorKshirsagar S
dc.contributor.authorTobon D.P
dc.contributor.authorZhu Y
dc.contributor.authorFalk T.H.
dc.date.accessioned2023-10-24T19:25:27Z
dc.date.available2023-10-24T19:25:27Z
dc.date.created2022
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/11407/8075
dc.description.abstractWearable devices are burgeoning, and applications across numerous verticals are emerging, including human performance monitoring, at-home patient monitoring, and health tracking, to name a few. Off-the-shelf wearables have been developed with focus on portability, usability, and low-cost. As such, when deployed in highly ecological settings, wearable data can be corrupted by artifacts and by missing data, thus severely hampering performance. In this technical note, we overview a signal processing representation called the modulation spectrum. The representation quantifies the rate-of-change of different spectral magnitude components and is shown to separate signal from noise, thus allowing for improved quality measurement, quality enhancement, and noise-robust feature extraction, as well as for disease characterization. We provide an overview of numerous applications developed by the authors over the last decade spanning different wearable modalities and list the results obtained from experimental results alongside comparisons with various state-of-the-art benchmark methods. Open-source software is showcased with the hope that new applications can be developed. We conclude with a discussion on possible future research directions, such as context awareness, signal compression, and improved input representations for deep learning algorithms. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.eng
dc.language.isoeng
dc.publisherMDPI
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132167961&doi=10.3390%2fs22124579&partnerID=40&md5=18027fc615095214c745c77c59d60e65
dc.sourceSensors
dc.sourceSensorseng
dc.subjectFeature engineeringeng
dc.subjectModulation spectrumeng
dc.subjectQuality measurementeng
dc.subjectSignal enhancementeng
dc.subjectWearable deviceseng
dc.titleModulation Spectral Signal Representation for Quality Measurement and Enhancement of Wearable Device Data: A Technical Noteeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaArtículo
dc.identifier.doi10.3390/s22124579
dc.relation.citationvolume22
dc.relation.citationissue12
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationTiwari, A., Institut National de la Recherche Scientifique, University of Quebec, Montréal, QC H5A 1K6, Canada, Myant Inc., Toronto, ON M9W 1B6, Canada
dc.affiliationCassani, R., McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
dc.affiliationKshirsagar, S., Institut National de la Recherche Scientifique, University of Quebec, Montréal, QC H5A 1K6, Canada
dc.affiliationTobon, D.P., Faculty of Engineering, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationZhu, Y., Institut National de la Recherche Scientifique, University of Quebec, Montréal, QC H5A 1K6, Canada
dc.affiliationFalk, T.H., Institut National de la Recherche Scientifique, University of Quebec, Montréal, QC H5A 1K6, Canada
dc.relation.references(2021) Wearable Technology Market by Product, Type, Application, and Geography—Global Forecast to 2026, , Technical Report
dc.relation.referencesMarkets and Markets: Northbrook, IL, USA
dc.relation.referencesNatarajan, A., Su, H.W., Heneghan, C., Assessment of physiological signs associated with COVID-19 measured using wearable devices (2020) NPJ Digit. Med, 3, p. 156. , [CrossRef] [PubMed]
dc.relation.referencesSmarr, B.L., Aschbacher, K., Fisher, S.M., Chowdhary, A., Dilchert, S., Puldon, K., Rao, A., Mason, A.E., Feasibility of continuous fever monitoring using wearable devices (2020) Sci. Rep, 10, p. 21640. , [CrossRef] [PubMed]
dc.relation.referencesBogu, G.K., Snyder, M.P., Deep learning-based detection of COVID-19 using wearables data (2021) MedRxiv, , [CrossRef]
dc.relation.referencesDagher, L., Shi, H., Zhao, Y., Marrouche, N.F., Wearables in cardiology: Here to stay (2020) Heart Rhythm, 17, pp. 889-895. , [CrossRef] [PubMed]
dc.relation.referencesCelik, Y., Stuart, S., Woo, W.L., Godfrey, A., Gait analysis in neurological populations: Progression in the use of wearables (2020) Med. Eng. Phys, 87, pp. 9-29. , [CrossRef]
dc.relation.referencesFeng, T., Booth, B.M., Baldwin-Rodríguez, B., Osorno, F., Narayanan, S., A multimodal analysis of physical activity, sleep, and work shift in nurses with wearable sensor data (2021) Sci. Rep, 11, pp. 1-12
dc.relation.referencesBeauchamp, U.L., Pappot, H., Holländer-Mieritz, C., The use of wearables in clinical trials during cancer treatment: Systematic review (2020) JMIR MHealth UHealth, 8, p. e22006. , [CrossRef]
dc.relation.referencesSmith, E.N., Santoro, E., Moraveji, N., Susi, M., Crum, A.J., Integrating wearables in stress management interventions: Promising evidence from a randomized trial (2020) Int. J. Stress Manag, 27, p. 172. , [CrossRef]
dc.relation.referencesShah, R.V., Grennan, G., Zafar-Khan, M., Alim, F., Dey, S., Ramanathan, D., Mishra, J., Personalized machine learning of depressed mood using wearables (2021) Transl. Psychiatry, 11, pp. 1-18
dc.relation.referencesSun, W., Liu, J., Zhang, H., When smart wearables meet intelligent vehicles: Challenges and future directions (2017) IEEE Wirel. Commun, 24, pp. 58-65. , [CrossRef]
dc.relation.referencesJiang, Y., Li, Z., Wang, J., Ptrack: Enhancing the applicability of pedestrian tracking with wearables (2018) IEEE Trans. Mob. Comput, 18, pp. 431-443. , [CrossRef]
dc.relation.referencesBuruk, O., Salminen, M., Xi, N., Nummenmaa, T., Hamari, J., Towards the Next Generation of Gaming Wearables (2021) Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1-15. , Yokohama, Japan, 8–13 May
dc.relation.referencesBuruk, O., Hamari, J., Towards the Next Generation of Extended Reality Wearables (2021) Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1-7. , Yokohama, Japan, 8–13 May
dc.relation.referencesAun, N.F.M., Soh, P.J., Al-Hadi, A.A., Jamlos, M.F., Vandenbosch, G.A., Schreurs, D., Revolutionizing wearables for 5G: 5G technologies: Recent developments and future perspectives for wearable devices and antennas (2017) IEEE Microw. Mag, 18, pp. 108-124. , [CrossRef]
dc.relation.referencesAhn, C.R., Lee, S., Sun, C., Jebelli, H., Yang, K., Choi, B., Wearable sensing technology applications in construction safety and health (2019) J. Constr. Eng. Manag, 145, p. 03119007. , [CrossRef]
dc.relation.referencesSvertoka, E., Rusu-Casandra, A., Marghescu, I., State-of-the-Art of Industrial Wearables: A Systematic Review (2020) Proceedings of the 2020 13th International Conference on Communications (COMM), pp. 411-415. , Bucharest, Romania, 18–20 June
dc.relation.referencesHaddad, M., Hermassi, S., Aganovic, Z., Dalansi, F., Kharbach, M., Mohamed, A.O., Bibi, K.W., Ecological validation and reliability of hexoskin wearable body metrics tool in measuring pre-exercise and peak heart rate during shuttle run test in professional handball players (2020) Front. Physiol, 11, p. 957. , [CrossRef]
dc.relation.referencesCho, S., Ensari, I., Weng, C., Kahn, M.G., Natarajan, K., Factors Affecting the Quality of Person-Generated Wearable Device Data and Associated Challenges: Rapid Systematic Review (2021) JMIR MHealth UHealth, 9, p. e20738. , [CrossRef] [PubMed]
dc.relation.referencesMartinez, G.J., Mattingly, S.M., Mirjafari, S., Nepal, S.K., Campbell, A.T., Dey, A.K., Striegel, A.D., On the quality of real-world wearable data in a longitudinal study of information workers (2020) Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1-6. , Austin, TX, USA, 23–27 March
dc.relation.referencesBizzego, A., Gabrieli, G., Furlanello, C., Esposito, G., Comparison of wearable and clinical devices for acquisition of peripheral nervous system signals (2020) Sensors, 20, p. 6778. , [CrossRef]
dc.relation.referencesBaek, H.J., Shin, J., Effect of missing inter-beat interval data on heart rate variability analysis using wrist-worn wearables (2017) J. Med. Syst, 41, pp. 1-9. , [CrossRef]
dc.relation.referencesBarrios, L., Oldrati, P., Santini, S., Lutterotti, A., Evaluating the accuracy of heart rate sensors based on photoplethysmography for in-the-wild analysis (2019) Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, pp. 251-261. , Trento, Italy, 20–23 May
dc.relation.referencesLiu, H., Chen, F., Hartmann, V., Khalid, S.G., Hughes, S., Zheng, D., Comparison of different modulations of photoplethysmogra-phy in extracting respiratory rate: From a physiological perspective (2020) Physiol. Meas, 41, p. 094001. , [CrossRef]
dc.relation.referencesYang, S.Y., Lin, Y.P., Validating a LEGO-Like EEG Headset for a Simultaneous Recording of Wet-and Dry-Electrode Systems During Treadmill Walking (2020) Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4055-4058. , Montreal, QC, Canada, 20–24 July
dc.relation.referencesFuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M.A., Simango, B., Buote, R., Cullen, K., Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review (2020) JMIR MHealth UHealth, 8, p. e18694. , [CrossRef]
dc.relation.referencesDaly, I., Pichiorri, F., Faller, J., Kaiser, V., Kreilinger, A., Scherer, R., Müller-Putz, G., What does clean EEG look like? (2012) Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3963-3966. , San Diego, CA, USA, 28 August–1 September
dc.relation.referencesZaman, M.S., Morshed, B.I., Estimating Reliability of Signal Quality of Physiological Data from Data Statistics Itself for Real-time Wearables (2020) Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5967-5970. , Montreal, QC, Canada, 20–24 July
dc.relation.referencesBehar, J., Oster, J., Li, Q., Clifford, G., A single channel ECG quality metric (2012) 2012 Computing in Cardiology, pp. 381-384. , IEEE: Piscataway, NJ, USA
dc.relation.referencesMahdid, Y., Lee, U., Blain-Moraes, S., Assessing the Quality of Wearable EEG Systems Using Functional Connectivity (2020) IEEE Access, 8, pp. 193214-193225. , [CrossRef]
dc.relation.referencesWang, Z., Zhu, J., Yan, T., Yang, L., A new modified wavelet-based ECG denoising (2019) Comput. Assist. Surg, 24, pp. 174-183. , [CrossRef] [PubMed]
dc.relation.referencesNasseri, M., Nurse, E., Glasstetter, M., Böttcher, S., Gregg, N.M., Laks Nandakumar, A., Joseph, B., Bruno, E., Signal quality and patient experience with wearable devices for epilepsy management (2020) Epilepsia, 61, pp. S25-S35. , [CrossRef] [PubMed]
dc.relation.referencesMammone, N., La Foresta, F., Morabito, F.C., Automatic artifact rejection from multichannel scalp EEG by wavelet ICA (2011) IEEE Sens. J, 12, pp. 533-542. , [CrossRef]
dc.relation.referencesQi, Y., Yao, F., Yu, M., A Single-Channel ICA-R Method for Speech Signal Denoising combining EMD and Wavelet (2014) J. Comput, 9, pp. 2082-2090. , [CrossRef]
dc.relation.referencesVullings, R., De Vries, B., Bergmans, J.W., An adaptive Kalman filter for ECG signal enhancement (2010) IEEE Trans. Biomed. Eng, 58, pp. 1094-1103. , [CrossRef]
dc.relation.referencesRosanne, O., Albuquerque, I., Cassani, R., Gagnon, J.F., Tremblay, S., Falk, T.H., Adaptive filtering for improved eeg-based mental workload assessment of ambulant users (2021) Front. Neurosci, 15, p. 341. , [CrossRef]
dc.relation.referencesArsene, C.T., Hankins, R., Yin, H., Deep learning models for denoising ECG signals (2019) Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1-5. , Coruna, Spain, 2–6 September
dc.relation.referencesSingh, P., Pradhan, G., A new ECG denoising framework using generative adversarial network (2020) IEEE/ACM Trans. Comput. Biol. Bioinform, 18, pp. 759-764. , [CrossRef]
dc.relation.referencesMichelsanti, D., Tan, Z.H., Zhang, S.X., Xu, Y., Yu, M., Yu, D., Jensen, J., (2021) An overview of deep-learning-based audio-visual speech enhancement and separation, , arXiv arXiv:2008.09586
dc.relation.referencesXu, H., Yan, W., Lan, K., Ma, C., Wu, D., Wu, A., Yang, Z., Yan, M., Assessing Electrocardiogram and Respiratory Signal Quality of a Wearable Device (SensEcho): Semisupervised Machine Learning-Based Validation Study (2021) JMIR MHealth UHealth, 9, p. e25415. , [CrossRef]
dc.relation.referencesMinguillon, J., Lopez-Gordo, M.A., Pelayo, F., Trends in EEG-BCI for daily-life: Requirements for artifact removal (2017) Biomed. Signal Process. Control, 31, pp. 407-418. , [CrossRef]
dc.relation.referencesGabard-Durnam, L.J., Mendez Leal, A.S., Wilkinson, C.L., Levin, A.R., The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data (2018) Front. Neurosci, 12, p. 97. , [CrossRef]
dc.relation.referencesHan, X., Hu, Y., Foschini, L., Chinitz, L., Jankelson, L., Ranganath, R., Deep learning models for electrocardiograms are susceptible to adversarial attack (2020) Nat. Med, 26, pp. 360-363. , [CrossRef] [PubMed]
dc.relation.referencesCassani, R., Falk, T.H., Spectrotemporal modeling of biomedical signals: Theoretical foundation and applications (2018) Reference Module in Biomedical Sciences, , Elsevier: Amsterdam, The Netherlands
dc.relation.referencesTobon, D., Falk, T.H., Maier, M., MS-QI: A modulation spectrum-based ECG quality index for telehealth applications (2014) IEEE Trans. Biomed. Eng, 63, pp. 1613-1622. , [CrossRef] [PubMed]
dc.relation.referencesCassani, R., Falk, T.H., Horai, A., Gheorghe, L.A., Evaluating the measurement of driver heart and breathing rates from a sensor-equipped steering wheel using spectrotemporal signal processing (2019) Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2843-2847. , Auckland, New Zeland, 27–30 October
dc.relation.referencesTobón, D.P., Falk, T.H., Online ECG quality assessment for context-aware wireless body area networks (2015) Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 587-592. , Halifax, NS, Canada, 3–6 May
dc.relation.referencesDrullman, R., Festen, J.M., Plomp, R., Effect of reducing slow temporal modulations on speech reception (1994) J. Acoust. Soc. Am, 95, pp. 2670-2680. , [CrossRef] [PubMed]
dc.relation.referencesPlomp, R., Houtgast, T., Steeneken, H.J., The modulation transfer function in audition (2020) Limits in Perception, pp. 117-138. , CRC Press: Boca Raton, FL, USA
dc.relation.referencesFalk, T.H., Zheng, C., Chan, W.Y., A non-intrusive quality and intelligibility measure of reverberant and dereverberated speech (2010) IEEE Trans. Audio Speech Lang. Process, 18, pp. 1766-1774. , [CrossRef]
dc.relation.referencesFalk, T.H., Chan, W.Y., Temporal dynamics for blind measurement of room acoustical parameters (2010) IEEE Trans. Instrum. Meas, 59, pp. 978-989. , [CrossRef]
dc.relation.referencesBraun, S., Santos, J.F., Habets, E.A., Falk, T.H., Dual-channel modulation energy metric for direct-to-reverberation ratio estimation (2018) Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 206-210. , Calgary, AB, Canada, 15–20 April
dc.relation.referencesSantos, J.F., Senoussaoui, M., Falk, T.H., An improved non-intrusive intelligibility metric for noisy and reverberant speech (2014) Proceedings of the 2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC), pp. 55-59. , Juan-les-Pins, France, 8–11 September
dc.relation.referencesSantos, J.F., Cosentino, S., Hazrati, O., Loizou, P.C., Falk, T.H., Objective speech intelligibility measurement for cochlear implant users in complex listening environments (2013) Speech Commun, 55, pp. 815-824. , [CrossRef]
dc.relation.referencesSenoussaoui, M., Santos, J.F., Falk, T.H., (2015) SRMR variants for improved blind room acoustics characterization, , arXiv arXiv:1510.04707
dc.relation.referencesCauchi, B., Siedenburg, K., Santos, J.F., Falk, T.H., Doclo, S., Goetze, S., Non-intrusive speech quality prediction using modulation energies and lstm-network (2019) IEEE/ACM Trans. Audio Speech Lang. Process, 27, pp. 1151-1163. , [CrossRef]
dc.relation.referencesSantos, J.F., Bouserhal, R., Voix, J., Falk, T.H., Objective speech quality estimation of in-ear microphone speech (2016) Proceedings of the 5th ISCA/DEGA Workshop on Perceptual Quality of Systems (PQS 2016), , Berlin, Germany, 29–31 August
dc.relation.referencesKinoshita, K., Delcroix, M., Gannot, S., Habets, E.A., Haeb-Umbach, R., Kellermann, W., Leutnant, V., Raj, B., A summary of the REVERB challenge: State-of-the-art and remaining challenges in reverberant speech processing research (2016) EURASIP J. Adv. Signal Process, 2016, pp. 1-19. , [CrossRef]
dc.relation.referencesEaton, J., Gaubitch, N.D., Moore, A.H., Naylor, P.A., Estimation of room acoustic parameters: The ACE challenge (2016) IEEE/ACM Trans. Audio Speech Lang. Process, 24, pp. 1681-1693. , [CrossRef]
dc.relation.referencesFalk, T.H., Parsa, V., Santos, J.F., Arehart, K., Hazrati, O., Huber, R., Kates, J.M., Scollie, S., Objective quality and intelligibility prediction for users of assistive listening devices: Advantages and limitations of existing tools (2015) IEEE Signal Process. Mag, 32, pp. 114-124. , [CrossRef] [PubMed]
dc.relation.referencesTobón, D.P., Falk, T.H., Adaptive spectro-temporal filtering for electrocardiogram signal enhancement (2016) IEEE J. Biomed. Health Informatics, 22, pp. 421-428. , [CrossRef] [PubMed]
dc.relation.referencesPan, J., Tompkins, W.J., A real-time QRS detection algorithm (1985) IEEE Transactions on Biomedical Engineering, pp. 230-236. , IEEE: Piscataway, NJ, USA
dc.relation.referencesTiwari, A., Albuquerque, I., Parent, M., Gagnon, J.F., Lafond, D., Tremblay, S., Falk, T.H., A Comparison of Two ECG Inter-beat Interval Measurement Methods for HRV-Based MentalWorkload Prediction of Ambulant Users (2019) Proceedings of the CMBES Proceedings, 42. , Ottawa, ON, Canada, 21–24 May
dc.relation.referencesHermansky, H., Wan, E.A., Avendano, C., Speech enhancement based on temporal processing (1995) Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal Processing, 1, pp. 405-408. , Detroit, MI, USA, 9–12 May
dc.relation.referencesAvendano, C., Hermansky, H., Vis, M., Bayya, A., Adaptive speech enhancement using frequency-specific SNR estimates (1996) Proceedings of the IVTTA’96 Workshop on Interactive Voice Technology for Telecommunications Applications, pp. 65-68. , Basking Ridge, NJ, USA, 30 September–1 October
dc.relation.referencesHermansky, H., Morgan, N., RASTA processing of speech (1994) IEEE Trans. Speech Audio Process, 2, pp. 578-589. , [CrossRef]
dc.relation.referencesFalk, T.H., Stadler, S., Kleijn, W.B., Chan, W.Y., Noise suppression based on extending a speech-dominated modulation band (2007) Proceedings of the Eighth Annual Conference of the International Speech Communication Association, , Antwerp, Belgium, 27–31 August
dc.relation.referencesKarimian-Azari, S., Falk, T.H., Modulation spectrum based beamforming for speech enhancement (2017) Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 91-95. , New Paltz, NY, USA, 15–18 October
dc.relation.referencesdos Santos, E.M., Cassani, R., Falk, T.H., Fraga, F.J., Improved motor imagery brain-computer interface performance via adaptive modulation filtering and two-stage classification (2020) Biomed. Signal Process. Control, 57, p. 101812. , [CrossRef]
dc.relation.referencesCassani, R., Narayanan, S., Falk, T.H., Respiration rate estimation from noisy electrocardiograms based on modulation spectral analysis (2018) Proceedings of the CMBES Proceedings, 41. , Charlottetown, PEI, Canada, 8–11 May
dc.relation.referencesFalk, T.H., Chan, W.Y., Sejdic, E., Chau, T., Spectro-temporal analysis of auscultatory sounds (2010) New Developments in Biomedical Engineering, pp. 93-104. , IntechOpen: London, UK
dc.relation.referencesTobon, D.P., Jayaraman, S., Falk, T.H., Spectro-temporal electrocardiogram analysis for noise-robust heart rate and heart rate variability measurement (2017) IEEE J. Transl. Eng. Health Med, 5, pp. 1-11. , [CrossRef]
dc.relation.referencesFalk, T.H., Chan, W.Y., Modulation spectral features for robust far-field speaker identification (2009) IEEE Trans. Audio Speech Lang. Process, 18, pp. 90-100. , [CrossRef]
dc.relation.referencesAvila, A.R., Akhtar, Z., Santos, J.F., O’Shaughnessy, D., Falk, T.H., Feature pooling of modulation spectrum features for improved speech emotion recognition in the wild (2018) IEEE Trans. Affect. Comput, 12, pp. 177-188. , [CrossRef]
dc.relation.referencesAvila, A.R., Kshirsagar, S.R., Tiwari, A., Lafond, D., O’Shaughnessy, D., Falk, T.H., Speech-based stress classification based on modulation spectral features and convolutional neural networks (2019) Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1-5. , Coruna, Spain, 2–6 September
dc.relation.referencesSarria-Paja, M., Falk, T.H., Whispered speech detection in noise using auditory-inspired modulation spectrum features (2013) IEEE Signal Process. Lett, 20, pp. 783-786. , [CrossRef]
dc.relation.referencesSarria-Paja, M., Falk, T.H., Fusion of bottleneck, spectral and modulation spectral features for improved speaker verification of neutral and whispered speech (2018) Speech Commun, 102, pp. 78-86. , [CrossRef]
dc.relation.referencesDrouin-Picaro, A., Albuquerque, I., Gagnon, J.F., Lafond, D., Falk, T.H., EEG coupling features: Towards mental workload measurement based on wearables (2017) Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 28-33. , Banff, AB, USA, 5–8 October
dc.relation.referencesAlbuquerque, I., Rosanne, O., Gagnon, J.F., Tremblay, S., Falk, T.H., Fusion of spectral and spectro-temporal EEG features for mental workload assessment under different levels of physical activity (2019) Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 311-314. , San Francisco, CA, USA, 20–23 March
dc.relation.referencesClerico, A., Tiwari, A., Gupta, R., Jayaraman, S., Falk, T.H., Electroencephalography amplitude modulation analysis for automated affective tagging of music video clips (2018) Front. Comput. Neurosci, 11, p. 115. , [CrossRef] [PubMed]
dc.relation.referencesTrambaiolli, L.R., Cassani, R., Falk, T.H., EEG spectro-temporal amplitude modulation as a measurement of cortical hemodynamics: An EEG-fNIRS study (2020) Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3481-3484. , Montreal, QC, Canada, 20–24 July
dc.relation.referencesTrambaiolli, L., Cassani, R., Biazoli, C., Cravo, A., Sato, J., Falk, T., Resting-awake EEG amplitude modulation can predict performance of an fNIRS-based neurofeedback task (2018) Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1128-1132. , Miyazaki, Japan, 7–10 October
dc.relation.referencesTobon, D., Garudadri, H., Godino, J., Godbole, S., Patrick, K., Falk, T.H., Improved gait speed calculation via modulation spectral analysis of noisy accelerometer data (2020) IEEE Sens. J, 21, pp. 520-528. , [CrossRef]
dc.relation.referencesKhandelwal, S., Wickström, N., Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database (2017) Gait Posture, 51, pp. 84-90. , [CrossRef] [PubMed]
dc.relation.referencesFraga, F.J., Falk, T.H., Kanda, P.A., Anghinah, R., Characterizing Alzheimer’s disease severity via resting-awake EEG amplitude modulation analysis (2013) PLoS ONE, 8, p. e72240. , [CrossRef] [PubMed]
dc.relation.referencesCassani, R., Falk, T.H., Fraga, F.J., Kanda, P.A., Anghinah, R., The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer’s disease diagnosis (2014) Front. Aging Neurosci, 6, p. 55. , [CrossRef] [PubMed]
dc.relation.referencesCassani, R., Falk, T.H., Fraga, F.J., Cecchi, M., Moore, D.K., Anghinah, R., Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices (2017) Biomed. Signal Process. Control, 33, pp. 261-271. , [CrossRef]
dc.relation.referencesCassani, R., Falk, T.H., Alzheimer’s disease diagnosis and severity level detection based on electroencephalography modulation spectral “patch” features (2019) IEEE J. Biomed. Health Inform, 24, pp. 1982-1993. , [CrossRef]
dc.relation.referencesLopes, M.K.S., Cassani, R., Falk, T.H., On the use of saliency maps and convolutional neural networks for improved Alzheimer’s disease assessment (2021) Proceedings of the 2021 Alzheimer’s Association International Conference, , Denver, CO, USA, 26–30 July
dc.relation.referencesFalk, T.H., Chan, W.Y., Shein, F., Characterization of atypical vocal source excitation, temporal dynamics and prosody for objective measurement of dysarthric word intelligibility (2012) Speech Commun, 54, pp. 622-631. , [CrossRef]
dc.relation.referencesPaja, M.S., Falk, T.H., Automated dysarthria severity classification for improved objective intelligibility assessment of spastic dysarthric speech (2012) Proceedings of the Thirteenth Annual Conference of the International Speech Communication Association, , Portland, OR, USA, 9–13 September
dc.relation.referencesBedoya, S., Katz, N.B., Brian, J., O’Shaughnessy, D., Falk, T.H., Acoustic and prosodic analysis of vocalizations of 18-month-old toddlers with autism spectrum disorder (2020) Acoustic Analysis of Pathologies, pp. 93-126. , De Gruyter: Berlin, Germany
dc.relation.referencesZhu, Y., Falk, T.H., Fusion of Modulation Spectral and Spectral Features with Symptom Metadata for Improved Speech-Based Covid-19 Detection (2022) Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8997-9001. , Singapur, 22–27 May
dc.relation.referencesAtlas, L., Clark, P., Schimmel, S., (2010) Modulation Toolbox Version 2.1 for Matlab, , University of Washington: Seattle, WA, USA
dc.relation.referencesCassani, R., Albuquerque, I., Monteiro, J., Falk, T.H., AMA: An Open-source Amplitude Modulation Analysis Toolkit for Signal Processing Applications (2019) Proceedings of the 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1-4. , Ottawa, ON, Canada, 11–14 November
dc.relation.referencesPimentel, A., Tiwari, A., Falk, T.H., Human Mental State Monitoring in the Wild: Are We Better Off with Deeper Neural Networks or Improved Input Features? (2021) Proceedings of the CMBES Proceedings, 44. , Virtual, 11–13 May
dc.relation.referencesShah, S.A., Yang, X., Abbasi, Q.H., Cognitive health care system and its application in pill-rolling assessment (2019) Int. J. Numer. Model. Electron. Netw. Devices Fields, 32, p. e2632. , [CrossRef]
dc.relation.referencesSaeed, U., Yaseen Shah, S., Aziz Shah, S., Liu, H., Alhumaidi Alotaibi, A., Althobaiti, T., Ramzan, N., H Abbasi, Q., Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing (2022) Sensors, 22, p. 809. , [CrossRef]
dc.relation.referencesYagoubi, M.R., Serir, A., Beghdadi, A., Joint enhancement-compression of handwritten document images through DjVu encoder (2016) J. Vis. Commun. Image Represent, 41, pp. 324-338. , [CrossRef]
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record