Show simple item record

dc.contributor.authorKoverga A.A
dc.contributor.authorGómez-Marín A.M
dc.contributor.authorFlórez E.
dc.date.accessioned2023-10-24T19:25:30Z
dc.date.available2023-10-24T19:25:30Z
dc.date.created2022
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/8083
dc.description.abstractTheoretical insights have been gained into nickel adatom interaction with model platinum basal planes, and evolution of their fundamental properties with growing nickel surface coverage has been analyzed. Calculations have been performed using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional and dipole corrections. The presence of a single Ni atom appreciably affects the Pt surface, lowering the work function and shifting the d-band center position away from the Fermi level of Pt atoms in contact with Ni. At increasing coverage, Ni bonding strength with Pt increases and plain structures are formed on all considered surfaces, although the initial tendencies, seen for the Pt fundamental properties upon Ni adsorption, do not change. Compared to reported experimental data, results suggest that lowering of the work function, φ, of Pt(111) upon Ni adsorption may facilitate charge transfer through the electric double layer, improving the rate of the hydrogen evolution reaction in alkaline media on Ni-modified Pt(111) surfaces. Hence, this rate-promoting effect would be expected to be lower for Pt(110) and (100) because of the lower impact of Ni adatoms on φ for these two surfaces. Results of the present study improve the current understanding of adatoms' electronic effects on the substrate and contribute to the scientific basis for the systematic design and development of Pt-based catalysts. © 2022 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133781916&doi=10.1021%2facs.jpcc.2c01083&partnerID=40&md5=a1dd0d95b3a254c6516b780f02c4ae56
dc.sourceJ. Phys. Chem. C
dc.sourceJournal of Physical Chemistry Ceng
dc.titleNot a Mere Decoration: Impact of Submonolayer Coverages of Nickel on Fundamental Properties of Platinumeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcc.2c01083
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationKoverga, A.A., Department of Chemistry, Division of Fundamental Sciences (IEFQ), Technological Institute of Aeronautics (ITA), São Jose dos Campos, São Paulo, CEP:12228-900, Brazil, Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050034, Colombia
dc.affiliationGómez-Marín, A.M., Department of Chemistry, Division of Fundamental Sciences (IEFQ), Technological Institute of Aeronautics (ITA), São Jose dos Campos, São Paulo, CEP:12228-900, Brazil
dc.affiliationFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050034, Colombia
dc.relation.referencesWatanabe, M., Horiuchi, M., Motoo, S., Electrocatalysis by ad-atoms (1988) J. Electroanal. Chem. Interfacial Electrochem., 250, pp. 117-125
dc.relation.referencesCampbell, S.A., Parsons, R., Effect of Bi and Sn adatoms on formic acid and methanol oxidation at well-defined platinum surfaces (1992) J. Chem. Soc., Faraday Trans., 88, pp. 833-841
dc.relation.referencesKwon, Y., Hersbach, T.J.P., Koper, M.T.M., Electro-Oxidation of Glycerol on Platinum Modified by Adatoms: Activity and Selectivity Effects (2014) Top. Catal., 57, pp. 1272-1276
dc.relation.referencesFigueiredo, M.C., Sorsa, O., Doan, N., Pohjalainen, E., Hildebrand, H., Schmuki, P., Wilson, B.P., Kallio, T., Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals (2015) J. Power Sources, 275, pp. 341-350
dc.relation.referencesCaneppele, G.L., Almeida, T.S., Zanata, C.R., Teixeira-Neto, E., Fernández, P.S., Camara, G.A., Martins, C.A., Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition (2017) Appl. Catal. B: Environ., 200, pp. 114-120
dc.relation.referencesBoronat-González, A., Herrero, E., Feliu, J.M., Heterogeneous electrocatalysis of formic acid oxidation on platinum single crystal electrodes (2017) Curr. Opin. Electrochem., 4, pp. 26-31
dc.relation.referencesFuruya, N., Motoo, S., The electrochemical behavior of ad-atoms and their effect on hydrogen evolution (1977) J. Electroanal. Chem. Interfacial Electrochem., 78, pp. 243-256
dc.relation.referencesPerales-Rondón, J.V., Solla-Gullón, J., Herrero, E., Sánchez-Sánchez, C.M., Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape-controlled platinum nanoparticles (2017) Appl. Catal. B: Environ., 201, pp. 48-57
dc.relation.referencesLiu, H.-X., Tian, N., Brandon, M.P., Zhou, Z.-Y., Lin, J.-L., Hardacre, C., Lin, W.-F., Sun, S.-G., Tetrahexahedral Pt Nanocrystal Catalysts Decorated with Ru Adatoms and Their Enhanced Activity in Methanol Electrooxidation (2012) ACS Catal., 2, pp. 708-715
dc.relation.referencesLiu, H.-X., Tian, N., Brandon, M.P., Pei, J., Huangfu, Z.-C., Zhan, C., Zhou, Z.-Y., Sun, S.-G., Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration (2012) Phys. Chem. Chem. Phys., 14, pp. 16415-16423
dc.relation.referencesChen, Q.-S., Zhou, Z.-Y., Vidal-Iglesias, F.J., Solla-Gullón, J., Feliu, J.M., Sun, S.-G., Significantly Enhancing Catalytic Activity of Tetrahexahedral Pt Nanocrystals by Bi Adatom Decoration (2011) J. Am. Chem. Soc., 133, pp. 12930-12933
dc.relation.referencesLedezma-Yanez, I., Wallace, W.D.Z., Sebastián-Pascual, P., Climent, V., Feliu, J.M., Koper, M.T.M., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes (2017) Nat. Energy, 2, p. 17031
dc.relation.referencesSarabia, F.J., Climent, V., Feliu, J.M., Interfacial Study of Nickel-Modified Pt(111) Surfaces in Phosphate-Containing Solutions: Effect on the Hydrogen Evolution Reaction (2019) ChemPhysChem, 20, pp. 3056-3066
dc.relation.referencesCliment, V., Marković, N.M., Ross, P.N., Kinetics of Oxygen Reduction on an Epitaxial Film of Palladium on Pt(111) (2000) J. Phys. Chem. B, 104, pp. 3116-3120
dc.relation.referencesPašti, I., Mentus, S., First principles study of adsorption of metals on Pt(111) surface (2010) J. Alloys Compd., 497, pp. 38-45
dc.relation.referencesGossenberger, F., Roman, T., Forster-Tonigold, K., Groß, A., Change of the work function of platinum electrodes induced by halide adsorption (2014) Beilstein J. Nanotechnol., 5, pp. 152-161
dc.relation.referencesHammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220
dc.relation.referencesGreeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I., Nørskov, J.K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution (2006) Nat. Mater., 5, pp. 909-913
dc.relation.referencesPasti, I., Mentus, S., DFT study of adsorption of hydrogen and carbon monoxide on PtxBi1-x/Pt(111) bimetallic overlayers: Correlation to surface electronic properties (2009) Phys. Chem. Chem. Phys., 11, pp. 6225-6233
dc.relation.referencesBligaard, T., Nørskov, J.K., Ligand effects in heterogeneous catalysis and electrochemistry (2007) Electrochim. Acta, 52, pp. 5512-5516
dc.relation.referencesGuo, W., Vlachos, D.G., Effect of local metal microstructure on adsorption on bimetallic surfaces: Atomic nitrogen on Ni/Pt(111) (2013) J. Chem. Phys., 138, p. 174702
dc.relation.referencesSarabia, F.J., Climent, V., Feliu, J.M., Underpotential deposition of Nickel on platinum single crystal electrodes (2018) J. Electroanal. Chem., 819, pp. 391-400
dc.relation.referencesPaffett, M.T., Campbell, C.T., Taylor, T.N., Adsorption and growth modes of Bi on Pt(111) (1986) J. Chem. Phys., 85, pp. 6176-6185
dc.relation.referencesZeng, Z., Chang, K.-C., Kubal, J., Markovic, N.M., Greeley, J., Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion (2017) Nat. Energy, 2, p. 17070
dc.relation.referencesAbu Sayeed, M., Woods, C., Love, J., O'Mullane, A.P., Electrochemical Synthesis of a Multipurpose Pt-Ni Catalyst for Renewable Energy-Related Electrocatalytic Reactions (2020) ChemElectroChem, 7, pp. 4369-4377
dc.relation.referencesSarabia, F.J., Sebastián-Pascual, P., Koper, M.T., Climent, V., Feliu, J.M., Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media (2019) ACS Appl. Mater. Interfaces, 11, pp. 613-623
dc.relation.referencesMenning, C.A., Chen, J.G., Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures (2008) J. Chem. Phys., 128, p. 164703
dc.relation.referencesKitchin, J.R., Khan, N.A., Barteau, M.A., Chen, J.G., Yakshinskiy, B., Madey, T.E., Elucidation of the active surface and origin of the weak metal-hydrogen bond on Ni/Pt(111) bimetallic surfaces: A surface science and density functional theory study (2003) Surf. Sci., 544, pp. 295-308
dc.relation.referencesKhan, N.A., Chen, J.G., Using chemical probes to investigate properties of monolayer metal thin films (2003) J. Vac. Sci. Technol., A, 21, pp. 1302-1306
dc.relation.referencesBjörketun, M.E., Bondarenko, A.S., Abrams, B.L., Chorkendorff, I., Rossmeisl, J., Screening of electrocatalytic materials for hydrogen evolution (2010) Phys. Chem. Chem. Phys., 12, pp. 10536-10541
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561
dc.relation.referencesKresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid metal amorphous semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54, pp. 11169-11186
dc.relation.referencesKresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesBlochl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59, pp. 1758-1775
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621
dc.relation.referencesBader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press: Oxford, U.K
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction (2021) Electrochim. Acta, 368
dc.relation.referencesKoverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253
dc.relation.referencesArce, M.D., Quaino, P., Santos, E., Electronic changes at the Pt(111) interface induced by the adsorption of OH species (2013) Catal. Today, 202, pp. 120-127
dc.relation.referencesGómez, R., Orts, J.M., Álvarez-Ruiz, B., Feliu, J.M., Effect of Temperature on Hydrogen Adsorption on Pt(111), Pt(110), and Pt(100) Electrodes in 0.1 M HClO4 (2004) J. Phys. Chem. B, 108, pp. 228-238
dc.relation.referencesShen, A.-A., Cao, Y.-L., Adsorption and Decomposition of NH3on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study (2016) Chin. J. Chem. Phys., 29, pp. 710-716
dc.relation.referencesCampbell, R.A., Rodriguez, J.A., Goodman, D.W., Chemical and electronic properties of ultrathin metal films: The Pd/Re(0001) and Pd/Ru(0001) systems (1992) Phys. Rev. B, 46, pp. 7077-7087
dc.relation.referencesWatson, R.E., Bennett, L.H., Transition metals: D-band hybridization, electronegativities and structural stability of intermetallic compounds (1978) Phys. Rev. B, 18, pp. 6439-6449
dc.relation.referencesMi, C., Huang, Y., Chen, F., Wu, K., Wang, W., Yang, Y., Density functional theory study on dehydrogenation of methylcyclohexane on Ni-Pt(111) (2021) Int. J. Hydrogen Energy, 46, pp. 875-885
dc.relation.referencesKoverga, A.A., Flórez, E., Gómez-Marín, A.M., Electronic Changes at the Platinum Interface Induced by Bismuth and Tellurium Adatom Adsorption Submitted to Appl. Surf. Sci.
dc.relation.referencesTrasatti, S., Work function, electronegativity, and electrochemical behaviour of metals (1972) J. Electroanal. Chem. Interfacial Electrochem., 39, pp. 163-184
dc.relation.referencesDerry, G.N., Kern, M.E., Worth, E.H., Recommended values of clean metal surface work functions (2015) J. Vac. Sci. Technol. A: Vac. Surf. Films, 33
dc.relation.referencesSalmerón, M., Ferrer, S., Jazzar, M., Somorjai, G.A., Photoelectron-spectroscopy study of the electronic structure of Au and Ag overlayers on Pt(100), Pt(111), and Pt(997) surfaces (1983) Phys. Rev. B, 28, pp. 6758-6765
dc.relation.referencesSingh-Miller, N.E., Marzari, N., Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles (2009) Phys. Rev. B, 80
dc.relation.referencesGao, L., Souto-Casares, J., Chelikowsky, J.R., Demkov, A.A., Orientation dependence of the work function for metal nanocrystals (2017) J. Chem. Phys., 147, p. 214301
dc.relation.referencesSmoluchowski, R., Anisotropy of the Electronic Work Function of Metals (1941) Phys. Rev., 60, pp. 661-674
dc.relation.referencesBanholzer, W.F., Park, Y.O., Mak, K.M., Masel, R.I., A model for the plane-to-plane variations in catalytic activity seen during nitric oxide decomposition on platinum (1983) Surf. Sci., 128, pp. 176-190
dc.relation.referencesSolla-Gullón, J., Vidal-Iglesias, F.J., López-Cudero, A., Garnier, E., Feliu, J.M., Aldaz, A., Shape-dependent electrocatalysis: Methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles (2008) Phys. Chem. Chem. Phys., 10, pp. 3689-3698
dc.relation.referencesZhang, B., Wang, D., Hou, Y., Yang, S., Yang, X.H., Zhong, J.H., Liu, J., Yang, H.G., Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells (2013) Sci. Rep., 3, p. 1836
dc.relation.referencesFreire, R.L.H., Kiejna, A., Da Silva, J.L.F., Adsorption of Rh, Pd, Ir, and Pt on the Au(111) and Cu(111) Surfaces: A Density Functional Theory Investigation (2014) J. Phys. Chem. C, 118, pp. 19051-19061
dc.relation.referencesKitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Trends in the chemical properties of early transition metal carbide surfaces: A density functional study (2005) Catal. Today, 105, pp. 66-73
dc.relation.referencesPaßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933
dc.relation.referencesMa, H., Wang, G., Morikawa, Y., Nakamura, J., The relationship between formate adsorption energy and electronic properties: A first principles density functional theory study (2009) Sci. China, Ser. B: Chem., 52, pp. 1427-1433
dc.relation.referencesZheng, X., Li, L., Li, J., Wei, Z., Intrinsic effects of strain on low-index surfaces of platinum: Roles of the five 5d orbitals (2019) Phys. Chem. Chem. Phys., 21, pp. 3242-3249
dc.relation.referencesRösch, N., Ackermann, L., Pacchioni, G., Electronic structure and properties of nickel clusters: Ni6, Ni8, Ni19, and Ni44 (1992) Chem. Phys. Lett., 199, pp. 275-280
dc.relation.referencesPhilipsen, P.H.T., Baerends, E.J., Cohesive energy of 3d transition metals: Density functional theory atomic and bulk calculations (1996) Phys. Rev. B, 54, pp. 5326-5333
dc.relation.referencesConnétable, D., Andrieu, E., Monceau, D., First-principles nickel database: Energetics of impurities and defects (2015) Comput. Mater. Sci., 101, pp. 77-87
dc.relation.referencesKittel, C., (1986) Introduction to Solid State Physics, , John Wiley & Sons: New York, USA
dc.relation.referencesKrishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-Principles Investigation of the Formation of Pt Nanorafts on a Mo2C Support and Their Catalytic Activity for Oxygen Reduction Reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234
dc.relation.referencesEsposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A New Class of Electrocatalysts for Hydrogen Production from Water Electrolysis: Metal Monolayers Supported on Low-Cost Transition Metal Carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2to Methane (2015) ChemSusChem, 8, pp. 2745-2751
dc.relation.referencesTrasatti, S., (1980) Comprehensive Treatise of Electrochemistry, pp. 45-81. , Springer: US
dc.relation.referencesTrasatti, S., The absolute electrode potential: An explanatory note (Recommendations 1986) (1986) Pure Appl. Chem., 58, pp. 955-966
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, p. J23
dc.relation.referencesLasia, A., Mechanism and kinetics of the hydrogen evolution reaction (2019) Int. J. Hydrogen Energy, 44, pp. 19484-19518
dc.relation.referencesQuaino, P., Juarez, F., Santos, E., Schmickler, W., Volcano plots in hydrogen electrocatalysis-uses and abuses (2014) Beilstein J. Nanotechnol., 5, pp. 846-854
dc.relation.referencesKoverga, A.A., Flórez, E., Rodriguez, J.A., Pushing Cu uphill of the volcano curve: Impact of a WC support on the catalytic activity of copper toward the hydrogen evolution reaction (2021) Int. J. Hydrogen Energy, 46, pp. 25092-25102
dc.relation.referencesSheng, W., Myint, M., Chen, J.G., Yan, Y., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces (2013) Energy Environ. Sci., 6, p. 1509
dc.relation.referencesSheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J.G., Yan, Y., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy (2015) Nat. Commun., 6, p. 5848
dc.relation.referencesZheng, J., Sheng, W., Zhuang, Z., Xu, B., Yan, Y., Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy (2016) Sci. Adv., 2
dc.relation.referencesBligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J. Catal., 224, pp. 206-217
dc.relation.referencesSantos, E., Schmickler, W., Electrocatalysis of hydrogen oxidation - Theoretical foundations (2007) Angew. Chem., Int. Ed., 46, pp. 8262-8265
dc.relation.referencesİnoǧlu, N., Kitchin, J.R., New solid-state table: Estimating d-band characteristics for transition metal atoms (2010) Mol. Simul., 36, pp. 633-638
dc.relation.referencesBonde, J., Moses, P.G., Jaramillo, T.F., Nørskov, J.K., Chorkendorff, I., Hydrogen evolution on nano-particulate transition metal sulfides (2009) Faraday Discuss., 140, pp. 219-231
dc.relation.referencesZheng, Y., Jiao, Y., Li, L.H., Xing, T., Chen, Y., Jaroniec, M., Qiao, S.Z., Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution (2014) ACS Nano, 8, pp. 5290-5296
dc.relation.referencesWei, C., Sun, Y., Scherer, G.G., Fisher, A.C., Sherburne, M., Ager, J.W., Xu, Z.J., Surface Composition-Dependent Ligand Effect in Tuning the Activity of Nickel-Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline (2020) J. Am. Chem. Soc., 142, pp. 7765-7775
dc.relation.referencesGrimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132, p. 154104
dc.relation.referencesOlsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163
dc.relation.referencesShi, Q., Sun, R., Adsoprtion manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49
dc.relation.referencesVasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA study of hydrogen adsorption on transition metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379
dc.relation.referencesGarcia-Araez, N., Climent, V., Feliu, J.M., Potential-Dependent Water Orientation on Pt(111), Pt(100), and Pt(110), As Inferred from Laser-Pulsed Experiments. Electrostatic and Chemical Effects (2009) J. Phys. Chem. C, 113, pp. 9290-9304
dc.relation.referencesHoshi, Y., Yoshida, T., Nishikata, A., Tsuru, T., Dissolution of Pt-M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution (2011) Electrochim. Acta, 56, pp. 5302-5309
dc.relation.referencesSuh, W.K., Ganesan, P., Son, B., Kim, H., Shanmugam, S., Graphene supported Pt-Ni nanoparticles for oxygen reduction reaction in acidic electrolyte (2016) Int. J. Hydrogen Energy, 41, pp. 12983-12994
dc.relation.referencesEiler, K., Suriñach, S., Sort, J., Pellicer, E., Mesoporous Ni-rich Ni-Pt thin films: Electrodeposition, characterization and performance toward hydrogen evolution reaction in acidic media (2020) Appl. Catal. B, 265
dc.relation.referencesSantos, L.G.R.A., Oliveira, C.H.F., Moraes, I.R., Ticianelli, E.A., Oxygen reduction reaction in acid medium on Pt-Ni/C prepared by a microemulsion method (2006) J. Electroanal. Chem., 596, pp. 141-148
dc.relation.referencesChen, S., Niu, Z., Xie, C., Gao, M., Lai, M., Li, M., Yang, P., Effects of catalyst processing on the activity and stability of Pt-Ni nanoframe electrocatalysts (2018) ACS Nano, 12, pp. 8697-8705
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record