Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez M
dc.contributor.authorMarín C
dc.contributor.authorRestrepo L.
dc.date.accessioned2023-10-24T19:25:37Z
dc.date.available2023-10-24T19:25:37Z
dc.date.created2022
dc.identifier.issn7162952
dc.identifier.urihttp://hdl.handle.net/11407/8094
dc.description.abstractThe IRI International Regularity Index is a performance indicator that evaluates the functional condition of a pavement structure. Its value is a key input for the management of road assets, allowing to establish the opportune moment for carrying out interventions on the pavement. In addition, it is used to receive road surfaces, assess vehicle operating costs, evaluate the profitability of road projects and establish the cash flow in the financial administration of the project. The IRI data obtained from measurements carried out in the field, feed the deterministic deterioration model that allows future estimations of the indicator and the development of pavement maintenance programs. This research proposes to evaluate in a probabilistic way the model of the IRI International Regularity Index of the HDM-4 program, by assigning probability density functions to the input variables from real data taken in the field. To achieve this objective, a Montecarlo-type simulation model was developed, where roads must be classified by their geographical location, structural capacity of the pavement and traffic intensity expressed in Number of Equivalent Axes. The research results provide the IRI characterized by probability density functions, allowing its estimation from an expected reliability value. © 2022 Potificia Universidad Catolica de Chile. All rights reserved.eng
dc.language.isoeng
dc.publisherPotificia Universidad Catolica de Chile
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85136619973&doi=10.7764%2fRIC.00021.21&partnerID=40&md5=93aab4248fe3d20ae808649ce635444d
dc.sourceRev. Ing. Constr.
dc.sourceRevista Ingenieria de Construccioneng
dc.subjectInternational roughness indexeng
dc.subjectIRIeng
dc.subjectMonte Carlo methodeng
dc.subjectPavement managementeng
dc.subjectReliabilityeng
dc.titleProbabilistic model for prediction of international roughness index based on Monte Carlo [Modelo probabilístico para la predicción del índice de rugosidad internacional basado en Monte Carlo]eng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civilspa
dc.publisher.programIngeniería de Sistemasspa
dc.type.spaArtículo
dc.identifier.doi10.7764/RIC.00021.21
dc.relation.citationvolume37
dc.relation.citationissue2
dc.relation.citationstartpage117
dc.relation.citationendpage130
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRodríguez, M., Universidad de Medellín, Medellín, Colombia
dc.affiliationMarín, C., Universidad Católica de Chile, Santiago, Chile
dc.affiliationRestrepo, L., Universidad de Medellín, Medellín, Colombia
dc.relation.references(2012) Pavement Management Guide, , Washington
dc.relation.references(2017) Standard Practice for Quantifying Roughness of Pavements, , American Association of State Highway and Transportation Officials Washington
dc.relation.referencesAbaza, K. A., Back-calculation of transition probabilities for Markovian-based pavement performance prediction models (2016) International Journal of Pavement Engineering, 17 (3), pp. 253-264. , https://doi.org/10.1080/10298436.2014.993185
dc.relation.referencesAbdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., Afify, H. A., International Roughness Index prediction model for flexible pavements (2020) International Journal of Pavement Engineering, 21 (1), pp. 88-99. , https://doi.org/10.1080/10298436.2018.1441414
dc.relation.referencesAlimoradi, S., Golroo, A., Asgharzadeh, S. M., Development of pavement roughness master curves using Markov Chain (2020) International Journal of Pavement Engineering, pp. 1-11. , https://doi.org/10.1080/10298436.2020.1752917, 0
dc.relation.references(2021), ASTM International ASTM E1926-08: 2021. Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements
dc.relation.referencesBridgelall, R., Huang, Y., Zhang, Z., Deng, F., Precision enhancement of pavement roughness localization with connected vehicles (2016) Measurement Science and Technology, 27 (2). , https://doi.org/10.1088/0957-0233/27/2/025012
dc.relation.referencesCasella, G., Berger, R., (2002) Statistical inference, , 2nd ed. Thomson Learning
dc.relation.referencesChen, S. L., Lin, C. H., Tang, C. W., Chu, L. P., Cheng, C. K., Research on the international roughness index threshold of road rehabilitation in metropolitan areas: A case study in Taipei city (2020) Sustainability (Switzerland), 12 (24), pp. 1-19. , https://doi.org/10.3390/su122410536
dc.relation.referencesde Solminihac, H., Hidalgo, P., Salgado, M., Valdés, M., Calibration of structural cracking models for asphalt pavement in HDM-4 to the chilean conditions (2002) Revista Ingeniería de Construcción, 17 (1), pp. 12-22
dc.relation.referencesde Solminihac, H., Salgado, M., Hidalgo, P., Valdes, M., Calibration of the roughness (IRI) progression model for asphalt pavements in HDM-4 to the chilean conditions (2002) Revista Ingeniería de Construcción, 17 (2), pp. 104-112
dc.relation.referencesde Solminihac, H., Hidalgo, P., Salgado, M., (2001) Seguimiento para la calibración de modelos de deterioro de pavimentos asfálticos
dc.relation.referencesDevore, J. L., (2008) Probability and Statistics for Engineering and the Sciences, , 7th ed. Cengage Learning
dc.relation.referencesDong, Q., Huang, B., Richards, S. H., Calibration and application of treatment performance models in a pavement management system in Tennessee (2015) Journal of Transportation Engineering, 141 (2), pp. 1-9. , https://doi.org/10.1061/(ASCE)TE.1943-5436.0000738
dc.relation.referencesGharieb, M., Nishikawa, T., Development of Roughness Prediction Models for Laos National Road Network (2021) CivilEng, 2 (1), pp. 158-173. , https://doi.org/10.3390/civileng2010009
dc.relation.referencesHaldar, A., Mahadevan, S., (2000) Probability, reliability, and statistical methods in engineering design, , Hoboken, N. J.: John Wiley & Sons
dc.relation.referencesHassan, R., Lin, O., Thananjeyan, A., A comparison between three approaches for modelling deterioration of five pavement surfaces (2017) International Journal of Pavement Engineering, 18 (1), pp. 26-35. , https://doi.org/10.1080/10298436.2015.1030744
dc.relation.referencesHeba, A., Assaf, G. J., Bayes linear regression performance model depending on experts’ knowledge and current road condition (2018) Advances in Civil Engineering Materials, 7 (3), pp. 428-445. , https://doi.org/10.1520/ACEM20170115
dc.relation.referencesHosseini, S. A., Smadi, O., How prediction accuracy can affect the decision-making process in pavement management system (2021) Infrastructures, 6 (2), pp. 1-17. , https://doi.org/10.3390/infrastructures6020028
dc.relation.referencesHuang, Y., Moore, R., Roughness Level Probability Prediction Using Artificial Neural Networks (1997) Journal of the Transportation Research Board, 1592 (1), pp. 89-97. , https://doi.org/https://doi.org/10.3141/1592-11
dc.relation.referencesHuang, Y., (2004) Pavement Analysis and Design, , 2nd ed. Englewood Cliffs, NJ: Prentice Hall
dc.relation.referencesJing, G., Recent Developments in Railway Track and Transportation Engineering (2017) Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures, 1. , http://www.springer.com/series/15140, May 2019)
dc.relation.referencesKadry, S., El Hami, A., (2015) Numerical Methods for Reliability and Safety Assessment: Multiscale and Multiphysics Systems, , https://doi.org/10.1007/978-3-319-07167-1, Springer
dc.relation.referencesLaw, A. M., Simulation Modeling and Analysis (2015) Journal of the American Statistical Association, 78 (383). , https://doi.org/10.2307/2288169, (5th ed). Mc Graw Hill
dc.relation.referencesLi, N., Haas, R., Xie, W. C., Development of a new asphalt pavement performance prediction model (1997) Canadian Journal of Civil Engineering, 24 (4), pp. 547-559. , https://doi.org/https://doi.org/10.1139/l97-001
dc.relation.referencesLiu, L., Gharaibeh, N., Bayesian model for predicting the performance of pavements treated with thin hot-mix asphalt overlays (2014) Transportation Research Record, 2431 (1), pp. 33-41. , https://doi.org/10.3141/2431-05
dc.relation.referencesMahmood, M., Rahman, M., Mathavan, S., Distress based pavement performance prediction models (2016) 8th International Conference on Maintenance and Rehabilitation of Pavements, MAIREPAV 2016, pp. 357-368. , https://doi.org/10.3850/978-981-11-0449-7-052-cd, Singapore, March 2018
dc.relation.referencesMazari, M., Rodriguez, D. D., Prediction of pavement roughness using a hybrid gene expression programming-neural network technique (2016) Journal of Traffic and Transportation Engineering (eng Edition), 3 (5), pp. 448-455. , https://doi.org/10.1016/j.jtte.2016.09.007
dc.relation.referencesMedina, J. R., Noorvand, H., Shane Underwood, B., Kaloush, K., Statistical Validation of Crowdsourced Pavement Ride Quality Measurements from Smartphones (2020) Journal of Computing in Civil Engineering, 34 (3), p. 04020009. , https://doi.org/10.1061/(asce)cp.19435487.0000891
dc.relation.references(2017) Configuración Y Parametrización Del Modelo Hdm-4 a Las Condiciones De Chile, , Ministerio de Desarrollo Social, & Consorcio APSA DDQ. MDS, Subsecretaría de Evaluación Social
dc.relation.referencesMontgomery, D., Runger, G., (2018) Applied Statistics and Probability for Engineers, , 7ed. Hoboken, N. J.: John Wiley & Sons
dc.relation.referencesMorosiuk, G., (1996) Specificactions for the HDM-4 Road Deterioration Model – Fourth, Fifth, Sixth, Seventh and Eighth Draft
dc.relation.referencesOnayev, A., Swei, O., IRI deterioration model for asphalt concrete pavements: capturing performance improvements over time (2021) Construction and Building Materials, 271, p. 121768. , https://doi.org/10.1016/j.conbuildmat.2020.121768
dc.relation.referencesOsorio-Lird, A., Chamorro, A., Videla, C., Tighe, S., Torres-Machi, C., Application of Markov chains and Monte Carlo simulations for developing pavement performance models for urban network management (2018) Structure and Infrastructure Engineering, 14 (9), pp. 1169-1181. , https://doi.org/10.1080/15732479.2017.1402064
dc.relation.referencesPérez-Acebo, H., Gonzalo-Orden, H., Findley, D. J., Rojí, E., Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads (2021) Construction and Building Materials, 272. , https://doi.org/10.1016/j.conbuildmat.2020.121665
dc.relation.referencesPérez-Acebo, H., Linares-Unamunzaga, A., Rojí, E., Gonzalo-Orden, H., IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work (2020) Coatings, 10 (2). , https://doi.org/10.3390/coatings10020097
dc.relation.referencesPiryonesi, S. M., El-Diraby, T. E., Examining the relationship between two road performance indicators: Pavement condition index and international roughness index (2021) Transportation Geotechnics, 26, p. 100441. , https://doi.org/10.1016/j.trgeo.2020.100441, (September 2020)
dc.relation.referencesProzzi, J. A., Madanat, S. M., Incremental nonlinear model for predicting pavement serviceability (2003) Journal of Transportation Engineering, 129 (6), pp. 635-641. , https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(635)
dc.relation.referencesQian, J., Jin, C., Zhang, J., Ling, J., Sun, C., International Roughness Index Prediction Model for Thin Hot Mix Asphalt Overlay Treatment of Flexible Pavements (2018) Transportation Research Record, 2672 (40), pp. 7-13. , https://doi.org/10.1177/0361198118768522
dc.relation.references(2021) R: A language and environment for statistical computing. (4.0.5), , R Foundation for Statistical Computing
dc.relation.referencesRausand, M., Hoyland, A., (2004) System Reliability Theory, , https://doi.org/10.16309/j.cnki.issn.10071776.2003.03.004, 2nd ed. Hoboken, N. J.: John Wiley & Sons
dc.relation.referencesRodríguez, M., (2014) Determinación de la confiabilidad implícita en el método de diseño estructural de pavimentos flexibles AASHTO-93 en base a modelos de predicción del deterioro, , https://repositorio.uc.cl/handle/11534/16571, [Pontificia Universidad Católica de Chile]
dc.relation.referencesRodríguez Moreno, M., Thenoux Zeballos, G., González Vaccarezza, A., Evaluación probabilística del agrietamiento de pavimentos asfálticos en carreteras de Chile (2013) Revista de La Construcción, 12 (2), pp. 152-165. , https://doi.org/10.4067/s0718-915x2013000200012
dc.relation.referencesRubinstein, R. Y., Kroese, D. P., (2017) Simulation and the Monte Carlo method, , 3rd ed. United States: Wiley
dc.relation.referencesSayers, M., Gillespie, T., Paterson, W., Guidelines for conducting and calibrating road roughness measurements.World Bank technical paper number 46 (1986) World Bank technical paper, (46). , (Issue)
dc.relation.referencesSidess, A., Ravina, A., Oged, E., A model for predicting the deterioration of the international roughness index (2020) International Journal of Pavement Engineering, pp. 1-11. , https://doi.org/10.1080/10298436.2020.1804062, 0
dc.relation.referencesUddin, W., (2006) The Handbook of Highway Engineering, , (T.F. Fwa (ed)). Boca Raton, FL.: Taylor & Francis Group
dc.relation.referencesVidela, C., de Solminihac, H., Gaete, R., Bustos, M., (1996) Ajuste de factores de calibración para ampliar modelos de deterioro de pavimentos asfálticos
dc.relation.referencesVidela, C., de Solminihac, H., Gaete, R., Bustos, M., Análisis Comparativo de la Calidad de la Predicción del Deterioro en Pavimentos Asfálticos entre Metodologías de Ventanas y Seguimiento en Tramos Testigo (1997) 9o Congreso Ibero-Latinoamericano Del Asfalto, 2, pp. 1155-1168
dc.relation.referencesWackerly, D., Mandenhall, W., Scheaffer, R., (2010) Estadística Matemática con Aplicaciones, , https://doi.org/10.2307/1269356, 7ma ed. Latinoamerica: Cengage Learning
dc.relation.referencesWilliams, T., (2002) Modelling Complex Projects, , Reino Unido: John Willey & Sons, Inc
dc.relation.referencesYang, J., Gunaratne, M., Lu, J. J., Dietrich, B., Use of recurrent Markov chains for modeling the crack performance of flexible pavements (2005) Journal of Transportation Engineering, 131 (11), pp. 861-872. , https://doi.org/10.1061/(ASCE)0733-947X(2005)131:11(861)
dc.relation.referencesZhou, G., Wang, L., Analysis of Flexible Pavement Distresses on IRI Model Guoqing Zhou 1 and Linbing Wang 2 1 2 (2009) Pavements and Materials: Modeling, Testing, and Performance, pp. 150-160
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem