Mostrar el registro sencillo del ítem

dc.contributor.authorLópez J.E
dc.contributor.authorArroyave C
dc.contributor.authorAristizábal A
dc.contributor.authorAlmeida B
dc.contributor.authorBuiles S
dc.contributor.authorChavez E.
dc.date.accessioned2023-10-24T19:25:40Z
dc.date.available2023-10-24T19:25:40Z
dc.date.created2022
dc.identifier.issn24058440
dc.identifier.urihttp://hdl.handle.net/11407/8101
dc.description.abstractThe intake of Cd-enriched food is the main Cd pathway for the nonsmoking population. In some cases, Cd bioaccumulates in edible plant parts which comprise risk to consumers, because of Cd is a harmful heavy metal that can cause potent environmental and health hazards. For instance, Cd enrichment of cacao seeds have led to Cd enrichment of cacao-based products. In Latin America and the Caribbean, Cd bioaccumulation in cacao seeds occurs in different regions with diverse edaphoclimatic conditions, which makes it difficult to select soil remediation alternatives. Limited resources require that potential amendments must be carefully investigated through laboratory and/or greenhouse conditions before scaling up to field experiments. In this study, we evaluated the effectiveness of four biochars: coffee-, quinoa-, and inoculated- and palm-biochar, derived from three feedstocks: coffee husk, quinoa straw, and oil palm residues, respectively. Biochars were applied in two rates (1 and 2% w/w) in two soils, one moderately acidic and one slightly alkaline (Cd-spiked and non-spiked). CCN-51 cacao plants were used for the greenhouse experiment. After 130 days, biometric parameters, the bioavailability of Cd in the soil, and the concentration of Cd and mineral nutrients in the plants were measured. Quinoa biochar at the 2% significantly decreased (P < 0.01), by ∼71%, bioavailable Cd in moderately acidic and slightly alkaline soils, and leaf-Cd by ∼48%. Soil pH, electrical conductivity, and effective cation exchange capacity were significantly (P < 0.01) correlated with bioavailable soil and leaf-Cd. Biochar characteristics, such as ash contents, basic cations content, and surface functional groups could be used as indicators for the selection of biochars to reduce Cd uptake by cacao. Additionally, application of quinoa derived biochar provided P and K, which could increase productivity to offset mitigation costs. Overall, incorporation of quinoa biochar at 2% rate is effective for lowering bioavailable Cd in different soil types which reduces leaf-Cd in cacao plants. © 2022 The Author(s)eng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133702572&doi=10.1016%2fj.heliyon.2022.e09790&partnerID=40&md5=6536095bacf1a01f7954c57624ffe9d7
dc.sourceHeliyon
dc.sourceHeliyoneng
dc.subjectBioavailable Cdeng
dc.subjectCocoa beanseng
dc.subjectPotentially toxic elementeng
dc.subjectSoil pHeng
dc.subjectSoil remediationeng
dc.titleReducing cadmium bioaccumulation in Theobroma cacao using biochar: basis for scaling-up to fieldeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.heliyon.2022.e09790
dc.relation.citationvolume8
dc.relation.citationissue6
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationLópez, J.E., Environmental Engineering Department, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationArroyave, C., Environmental Engineering Department, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationAristizábal, A., Process Engineering Department, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, 050022, Colombia
dc.affiliationAlmeida, B., Universidad Estatal de Milagro, UNEMI, Facultad de Ingenierías, Ciudadela Universitaria km 1 ½, Milagro, Ecuador
dc.affiliationBuiles, S., Process Engineering Department, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, 050022, Colombia
dc.affiliationChavez, E., Universidad Estatal de Milagro, UNEMI, Facultad de Ingenierías, Ciudadela Universitaria km 1 ½, Milagro, Ecuador, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
dc.relation.referencesAdamo, P., Zampella, M., Chemical speciation to assess potentially toxic metals’ (PTMs) bioavailability and geochemical forms in polluted soils (2008) Environmental Geochemistry, pp. 175-212. , Elsevier
dc.relation.referencesArévalo-Gardini, E., Arévalo-Hernández, C.O., Baligar, V.C., He, Z.L., Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru (2017) Sci. Total Environ., 605 (606), pp. 792-800
dc.relation.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., Montalvo, D., Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: a nationwide survey in Ecuador (2019) Sci. Total Environ., 649, pp. 120-127
dc.relation.referencesArgüello, D., Montalvo, D., Blommaert, H., Chavez, E., Smolders, E., Surface soil liming reduces cadmium uptake in cacao (Theobroma cacao L.) seedlings but is counteracted by enhanced subsurface Cd uptake (2020) J. Environ. Qual., 2, p. 20123
dc.relation.referencesAzhar, M., Zia ur Rehman, M., Ali, S., Qayyum, M.F., Naeem, A., Ayub, M.A., Anwar ul Haq, M., Rizwan, M., Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals (2019) Chemosphere, 227, pp. 72-81
dc.relation.referencesBashir, S., Hussain, Q., Shaaban, M., Hu, H., Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil (2018) Chemosphere, 211, pp. 632-639
dc.relation.referencesBertoldi, D., Barbero, A., Camin, F., Caligiani, A., Larcher, R., Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products (2016) Food Control, 65, pp. 46-53
dc.relation.referencesBorggaard, O.K., Holm, P.E., Strobel, B.W., Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review (2019) Geoderma, 343, pp. 235-246
dc.relation.referencesBravo, D., Santander, M., Rodríguez, J., Escobar, S., Atkinson, R.G., `From soil to chocolate bar`: identifying critical steps in the journey of cadmium in a Colombia cacao plantation (2022) Food Addit. Contam.
dc.relation.referencesBrewer, C.E., Unger, R., Schmidt-Rohr, K., Brown, R.C., Criteria to select biochars for field studies based on biochar chemical properties (2011) BioEnergy Res, 4, pp. 312-323
dc.relation.referencesChavez, E., He, Z.L., Stoffella, P.J., Mylavarapu, R., Li, Y., Baligar, V.C., Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations (2016) Environ. Sci. Pollut. Res., 23, pp. 17571-17580
dc.relation.referencesChavez, E., He, Z.L., Stoffella, P.J., Mylavarapu, R.S., Li, Y.C., Baligar, V.C., Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production (2016) Chemosphere, 150, pp. 57-62
dc.relation.referencesDai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P.C., Xu, J., Potential role of biochars in decreasing soil acidification - a critical review (2017) Sci. Total Environ., 581-582, pp. 601-611
dc.relation.referencesEl-Naggar, A., El-Naggar, A.H., Shaheen, S.M., Sarkar, B., Chang, S.X., Tsang, D.C.W., Rinklebe, J., Ok, Y.S., Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review (2019) J. Environ. Manag., 241, pp. 458-467
dc.relation.referencesCommission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of Cd in foodstuffs (2014) Off. J. Eur. Union, 57, pp. 75-79. , L138
dc.relation.referencesCadmium dietary exposure in the European population: cadmium dietary exposure in Europe (2012) EFSA J., 10, p. 2551
dc.relation.referencesFidel, R.B., Laird, D.A., Thompson, M.L., Lawrinenko, M., Characterization and quantification of biochar alkalinity (2017) Chemosphere, 167, pp. 367-373
dc.relation.referencesGao, X., Peng, Y., Zhou, Y., Adeel, M., Chen, Q., Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) (2019) J. Environ. Manag., 251
dc.relation.referencesGong, H., Tan, Z., Huang, K., Zhou, Y., Yu, J., Huang, Q., Mechanism of cadmium removal from soil by silicate composite biochar and its recycling (2021) J. Hazard Mater., 409
dc.relation.referencesGramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., Schulin, R., Soil cadmium uptake by cocoa in Honduras (2018) Sci. Total Environ., 612, pp. 370-378
dc.relation.referencesHamid, Y., Tang, L., Sohail, M.I., Cao, X., Hussain, B., Aziz, M.Z., Usman, M., Yang, X., An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain (2019) Sci. Total Environ.
dc.relation.referencesHamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Rashid, M.S., He, Z., Yang, X., Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review (2020) Sci. Total Environ., 707
dc.relation.referencesHeredia-Salgado, M.A., Coba S, J.A., Tarelho, L.A.C., Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor (2020) J. Clean. Prod., 266
dc.relation.referencesHooda, P.S., (2010) Trace Elements in Soils, , Wiley
dc.relation.referencesHouben, D., Evrard, L., Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar (2013) Chemosphere, 92, pp. 1450-1457
dc.relation.referencesHoussou, A.A., Jeyakumar, P., Niazi, N.K., Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils (2022) Biochar
dc.relation.referencesJia, Y., Li, J., Zeng, X., Zhang, N., Wen, J., Liu, J., Jiku, M.A., Su, S., The performance and mechanism of cadmium availability mitigation by biochars differ among soils with different pH: Hints for the reasonable choice of passivators (2022) J. Environ. Manag.
dc.relation.referencesKhan, W.D., Ramzani, P.M.A., Anjum, S., Abbas, F., Iqbal, M., Yasar, A., Ihsan, M.Z., Khan, S.A., Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach (2017) Chemosphere, 185, pp. 1144-1156
dc.relation.referencesLi, H., Luo, N., Li, Y.W., Cai, Q.Y., Li, H.Y., Mo, C.H., Wong, M.H., Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures (2017) Environ. Pollut., 224, pp. 622-630
dc.relation.referencesLópez, J.E., Builes, S., Heredia Salgado, M.A., Tarelho, L.A.C., Arroyave, C., Aristizábal, A., Chavez, E., Adsorption of cadmium using biochars produced from agro-residues (2020) J. Phys. Chem. C
dc.relation.referencesMaddela, N.R., Kakarla, D., Garc a, L.C., Chakraborty, S., Venkateswarlu, K., Megharaj, M., Cocoa-laden cadmium threatens human health and cacao economy: a critical view (2020) Sci. Total Environ., 720
dc.relation.referencesMeter, A., Atkinson, R.J., Laliberte, B., Cadmium in cacao from Latin America and the Caribbean: a review of research and potential mitigation solutions (2019) Rome (Italy): Biovers. Internat., 73
dc.relation.referencesMohamed, I., Ali, M., Ahmed, N., Abbas, M.H.H., Abdelsalam, M., Azab, A., Raleve, D., Fang, C., Cow manure-loaded biochar changes Cd fractionation and phytotoxicity potential for wheat in a natural acidic contaminated soil (2018) Ecotoxicol. Environ. Saf., 162, pp. 348-353
dc.relation.referencesOliveira, B.R.M., de Almeida, A.-A.F., Santos, N.D.A., Pirovani, C.P., Tolerance strategies and factors that influence the cadmium uptake by cacao tree (2022) Sci. Hortic. (Amsterdam), 293
dc.relation.referencesO'Connor, D., Peng, T., Zhang, J., Tsang, D.C.W., Alessi, D.S., Shen, Z., Bolan, N.S., Hou, D., Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials (2018) Sci. Total Environ., 619-620, pp. 815-826
dc.relation.referencesPan, J., Plant, J.A., Voulvoulis, N., Oates, C.J., Ihlenfeld, C., Cadmium levels in Europe: implication for human health (2009) Environ. Geochem. Health, 32, pp. 1-12
dc.relation.referencesPan, Y., Koopmans, G.F., Bonten, L.T.C., Song, J., Luo, Y., Temminghoff, E.J.M., Comans, R.N.J., Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.) (2016) Environ. Geochem. Health, 38, pp. 1355-1372
dc.relation.referencesQian, T.T., Wu, P., Qin, Q.Y., Huang, Y.N., Wang, Y.J., Zhou, D.M., Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II) (2019) J. Hazard Mater., 362, pp. 311-317
dc.relation.referencesRamtahal, G., Umaharan, P., Hanuman, A., Davis, C., Ali, L., The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L (2019) Sci. Total Environ., 693
dc.relation.referencesRizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M.I., Ok, Y.S., Cadmium minimization in wheat: a critical review (2016) Ecotoxicol. Environ. Saf., 130, pp. 43-53
dc.relation.referencesShen, X., Huang, D.-Y., Ren, X.-F., Zhu, H.-H., Wang, S., Xu, C., He, Y.-B., Zhu, Q.-H., Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil (2016) J. Environ. Manag., 168, pp. 245-251
dc.relation.referencesShi, R., Hong, Z., Li, J., Jiang, J., Baquy, M.A.-A., Xu, R., Qian, W., Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars (2017) J. Agric. Food Chem., 65, pp. 8111-8119
dc.relation.referencesShi, R.-Y., Ni, N., Nkoh, J.N., Dong, Y., Zhao, W.-R., Pan, X.-Y., Li, J.-Y., Qian, W., Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: the effects and mechanisms (2020) Sci. Total Environ., 719
dc.relation.referencesSmolders, E., Mertens, J., Cadmium (2013) Heavy Metals in Soils, pp. 283-311. , B.J. Alloway Springer Netherlands Dordrecht
dc.relation.referencesSuhani, I., Sahab, S., Srivastava, V., Singh, R.P., Impact of cadmium pollution on food safety and human health (2021) Curr. Opin. Toxicol., 27, pp. 1-7
dc.relation.referencesUchimiya, M., Klasson, K.T., Wartelle, L.H., Lima, I.M., Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations (2011) Chemosphere, 82, pp. 1431-1437
dc.relation.referencesUllah, I., Wang, Y., Eide, J.D., Dunwell, M.J., Evolution, and functional analysis of natural resistance-associated macrophage proteins (NRAMPs) from Theobroma cacao and their role in cadmium accumulation (2018) Sci. Rep.
dc.relation.referencesVanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Smolders, E., Mitigating the level of cadmium in cacao products: reviewing the transfer of cadmium from soil to chocolate bar (2021) Sci. Total Environ., , 146779
dc.relation.referencesVanderschueren, R., Doevenspeck, J., Helsen, F., Mounicou, S., Santner, J., Delcour, A.J., Chavez, E., Smolders, E., Cadmium migration from nib to testa during cacao fermentation is driven by nib acidification (2022) LWT
dc.relation.referencesWang, Y.-H., Siu, W.-K., Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations (2006) Can. Geotech. J., 43, pp. 587-600
dc.relation.referencesWang, R.-Z., Huang, D.-L., Liu, Y.-G., Zhang, C., Lai, C., Zeng, G.-M., Cheng, M., Luo, H., Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock (2018) Bioresour. Technol., 261, pp. 265-271
dc.relation.referencesWHO, Safety evaluation of certain food additives and contaminants in food (2011) Prepared by the Seventy-third Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), pp. 305-380. , http://www.inchem.org/documents/jecfa/jecmono/v64je01.pdf, World Health Organization (WHO Food Additives Series, No. 64) Geneva
dc.relation.referencesXiao, R., Wang, P., Mi, S., Ali, A., Liu, X., Li, Y., Guan, W., Zhang, Z., Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils (2019) Ecotoxicol. Environ. Saf., 181, pp. 155-163
dc.relation.referencesYuan, J.-H., Xu, R.-K., Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures (2011) Bioresour. Technol., 102, pp. 3488-3497
dc.relation.referencesYuan, P., Wang, J., Pan, Y., Shen, B., Wu, C., Review of biochar for the management of contaminated soil: preparation, application and prospect (2019) Sci. Total Environ., 659, pp. 473-490
dc.relation.referencesZhang, Y., Chen, T., Liao, Y., Reid, B.J., Chi, H., Hou, Y., Cai, C., Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice (Oryza sativa L.): a field study (2016) Environ. Pollut., 216, pp. 819-825
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem