Mostrar el registro sencillo del ítem

dc.contributor.authorDel Río J.S
dc.contributor.authorHernández D
dc.contributor.authorQuintana E.C
dc.contributor.authorVargas A.C
dc.contributor.authorArrieta C.E
dc.contributor.authorValencia D.
dc.date.accessioned2023-10-24T19:25:40Z
dc.date.available2023-10-24T19:25:40Z
dc.date.created2022
dc.identifier.issn21801363
dc.identifier.urihttp://hdl.handle.net/11407/8102
dc.description.abstractBranch pipe T-joints are used to connect and bifurcate hydraulic channels in big hydraulic power plants size. These components are submitted to enormous strengths that must be counteracted by integrated structures to the T-joint, for this case specified arrangement type "Nun neck". The main objective in this work is about validate structurally by numerical analysis the branch pipe T-joint design with reinforcement type “Nun Neck” to the operational established conditions in hydraulic channel design. The structural T-joint design was made following AISI Buried steel Penstocks and ASME section VIII Div. 1 standards. The simulation process was made by Multiphysics Simulation Software, Ansys Workbench V 17. The branch pipe T-joint CAD model is set as 1700 mm in diameter to flow and 1200mm to derivation. The computational simulation process was executed using the mechanical structure module in ANSYS Workbench V17.0 commercial version. The boundary conditions settings were established based on internal operational pressure given as 353.14 mWC and fixed restrictions in the areas of contact with the pipe. Equivalent Von Mises stress contours were determined looking to validate the stress state in branch T-joint, findings demonstrate that the proposed design has structural failures that must had been reinforced by civil works. © 2022, Penerbit Akademia Baru. All rights reserved.eng
dc.language.isoeng
dc.publisherPenerbit Akademia Baru
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85141177576&doi=10.37934%2fcfdl.14.10.115&partnerID=40&md5=1c879342d7aa9e97f20622faf2b6fbd8
dc.sourceCFD Lett.
dc.sourceCFD Letterseng
dc.subjectAnsys structuraleng
dc.subjectBranch pipe T-Jointeng
dc.subjectFEMeng
dc.subjectHydroelectric power planteng
dc.subjectNun neckeng
dc.titleReinforcement T-Joint Design and Structural Validation for a Hydroelectric Power Plant: Study Caseeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.type.spaArtículo
dc.identifier.doi10.37934/cfdl.14.10.115
dc.relation.citationvolume14
dc.relation.citationissue10
dc.relation.citationstartpage1
dc.relation.citationendpage15
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationDel Río, J.S., Department of Mechanical Engineering, GIIAM, Institución Universitaria Pascual Bravo, Medellín, Colombia
dc.affiliationHernández, D., Department of Mechatronics Engineering, Research Group-MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia
dc.affiliationQuintana, E.C., Department of Mechatronics Engineering, Research Group-MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia
dc.affiliationVargas, A.C., Department of Mechatronics Engineering, Research Group-MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia, Department of Mechanical Engineering, Universidad de Antioquia, Medellín, Colombia
dc.affiliationArrieta, C.E., Engineering Faculty, Research Group-Ingeniería en Ingeniería en Energía, Universidad de Medellín, Medellín, Colombia
dc.affiliationValencia, D., Department of Mechanical Engineering, Universidad de Antioquia, Medellín, Colombia
dc.relation.referencesCapuano, Linda, (2018) International Energy Outlook 2018 (IEO2018), , US Energy Information Administration (EIA): Washington, DC, USA (2018)
dc.relation.referencesWoldemariam, Endashaw Tesfaye, Lemu, Hirpa G., Gary Wang, G., CFD-driven valve shape optimization for performance improvement of a micro cross-flow turbine (2018) Energies, 11 (1), p. 248. , https://doi.org/10.3390/en11010248
dc.relation.references(2017) Hydropower Status Report 2017, , International Hydropower Association. IHA, London
dc.relation.referencesSinghal, Mukesh Kumar, Kumar, Arun, Optimum design of penstock for hydro projects (2015) International Journal of Energy and Power Engineering, 4 (4), pp. 216-226. , https://doi.org/10.11648/j.ijepe.20150404.14
dc.relation.referencesPenagos-Vásquez, Diego, Graciano-Uribe, Jonathan, Torres, Edward, Characterization of a Commercial Axial Flow PAT Through a Structured Methodology Step-by-Step (2022) CFD Letters, 14 (1), pp. 1-19. , https://doi.org/10.37934/cfdl.14.1.119
dc.relation.referencesRahman, Mohammad Nurizat, Aris, Mohd Shiraz, Ujir, Mohd Haffis, Boosroh, Mohd Hariffin, Pillai, Dinishkaran, Pillai, Velayutham, Predictive Numerical Analysis to Optimize Ventilation Performance in a Hydropower Surge Chamber for H2S Removal (2021) CFD Letters, 13 (10), pp. 69-80. , https://doi.org/10.37934/cfdl.13.10.6980, a/l
dc.relation.referencesKhattak, M. A., Mohd Ali, N. S., Zainal Abidin, N. H., Azhar, N. S., Omar, M. H., Common Type of Turbines in Power Plant: A Review (2016) Journal of Advanced Research in Applied Sciences and Engineering Technology, 3 (1), pp. 77-100
dc.relation.referencesKoirala, Ravi, Chitrakar, Sailesh, Neopane, Hari Prasad, Chhetri, Balendra, Thapa, Bhola, Computational design of bifurcation: a case study of Darundi Khola hydropower project (2017) International Journal of Fluid Machinery and Systems, 10 (1), pp. 1-8. , https://doi.org/10.5293/IJFMS.2017.10.1.001
dc.relation.referencesAguirre, Carlos Andrés, Gustavo Ramirez Camacho, Ramiro, de Oliveira, Waldir, Avellan, François, Numerical analysis for detecting head losses in trifurcations of high head in hydropower plants (2019) Renewable Energy, 131, pp. 197-207. , https://doi.org/10.1016/j.renene.2018.07.021
dc.relation.references(2012) Steel Penstocks, , Task Committee on Steel Penstock Design of Pipeline Planning and Design Committee of the Pipeline Division of ASCE. American Society of Civil Engineers
dc.relation.referencesKumar, B, Ravi, Investigation on buckling response of the aircraft's wing using finite-element method (2020) Australian Journal of Mechanical Engineering, 18, pp. S122-S131. , https://doi.org/10.1080/14484846.2018.1483467, sup1
dc.relation.referencesMolatefi, H., Najafian, S., Mozafari, H., Fracture mechanics of planetary gear set by using extended finite element method-linear elastic fracture mechanics approach (2015) Australian Journal of Mechanical Engineering, 13 (2), pp. 87-96. , https://doi.org/10.7158/M13-077.2015.13.2
dc.relation.referencesAbidin, Mohamad Naufal Zainal, Misro, Md Yushalify, Numerical Simulation of Heat Transfer using Finite Element Method (2022) Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 92 (2), pp. 104-115. , https://doi.org/10.37934/arfmts.92.2.104115
dc.relation.referencesRecommendations for the Design, Manufacture and Erection of Steel Penstocks of Welded Construction for Hydro Electric Installations (1980) European Committee of Boiler, Vessel and Pipe Work Manufacturers, , CECT
dc.relation.referencesBuried Steel Penstocks (1998) Steel Plate Engineering Data, 4. , AISE, and SPFA
dc.relation.referencesDesign, Construction and Inspection of Tanks and Pressure Vessels Design, Construction and Inspection of Tanks and Pressure Vessels, , ASME, in
dc.relation.referencesSwanson, H. S., Chapton, H. J., Wilkinson, W. J., King, C. L., Nelson, E. D., Design of wye branches for steel pipe (1955) Journal (American Water Works Association), 47 (6), pp. 581-630. , https://doi.org/10.1002/j.1551-8833.1955.tb19181.x
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem