Show simple item record

dc.contributor.authorRamírez-Velásquez I
dc.contributor.authorBedoya-Calle Á.H
dc.contributor.authorVélez E
dc.contributor.authorCaro-Lopera F.J.
dc.date.accessioned2023-10-24T19:26:04Z
dc.date.available2023-10-24T19:26:04Z
dc.date.created2022
dc.identifier.issn24701343
dc.identifier.urihttp://hdl.handle.net/11407/8114
dc.description.abstractAutomatic search of cavities and binding mode analysis between a ligand and a 3D protein receptor are challenging problems in drug design or repositioning. We propose a solution based on a shape theory theorem for an invariant coupled system of ligand-protein. The theorem provides a matrix representation with the exact formulas to be implemented in an algorithm. The method involves the following results: (1) exact formulae for the shape coordinates of a located-rotated invariant coupled system; (2) a parameterized search based on a suitable domain of van der Waals radii; (3) a scoring function for the discrimination of sites by measuring the distance between two invariant coupled systems including the atomic mass; (4) a matrix representation of the Lennard-Jones potential type 6-12 and 6-10 as the punctuation function of the algorithm for a molecular docking; and (5) the optimal molecular docking as a solution of an optimization problem based on the exploration of an exhaustive set of rotations. We apply the method in the xanthine oxidase protein with the following ligands: hypoxanthine, febuxostat, and chlorogenic acid. The results show automatic cavity detection and molecular docking not assisted by experts with meaningful amino acid interactions. The method finds better affinities than the expert software for known published cavities. © 2022 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85144481275&doi=10.1021%2facsomega.2c02227&partnerID=40&md5=5d773d6fd70fa8b96d8a2f76f5e7b32b
dc.sourceACS Omega
dc.sourceACS Omegaeng
dc.titleShape Theory Applied to Molecular Docking and Automatic Localization of Ligand Binding Pockets in Large Proteinseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1021/acsomega.2c02227
dc.relation.citationvolume7
dc.relation.citationissue50
dc.relation.citationstartpage45991
dc.relation.citationendpage46002
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRamírez-Velásquez, I., Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano ITM, Cll. 73 # 76A-354, Medellín, 050034, Colombia, Doctorate in Modeling and Scientific Computing, Faculty of Basic Sciences, University of Medellin, Medellin, 050026, Colombia
dc.affiliationBedoya-Calle, Á.H., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationVélez, E., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.affiliationCaro-Lopera, F.J., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Medellín, 050026, Colombia
dc.relation.referencesLuo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., Wang, J., Biomedical Data and Computational Models for Drug Repositioning: A Comprehensive Review (2021) Briefings Bioinf., 22, pp. 1604-1619
dc.relation.referencesRamirez-Velasquez, I.M., Velez, E., Bedoya-Calle, A., Caro-Lopera, F.J., Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy (2022) Molecules, 27, p. 2003
dc.relation.referencesVillarreal-Rios, A.L., Bedoya-Calle, Á.H., Caro-Lopera, F.J., Ortiz-Méndez, U., García-Méndez, M., Pérez-Ramírez, F.O., Ultrathin Tunable Conducting Oxide Films for Near-IR Applications: An Introduction to Spectroscopy Shape Theory (2019) SN Appl. Sci., 1, p. 1553
dc.relation.referencesLange, J.H.M., Coolen, H.K.A.C., Van Der Neut, M.A.W., Borst, A.J.M., Stork, B., Verveer, P.C., Kruse, C.G., Design, Synthesis, Biological Properties, and Molecular Modeling Investigations of Novel Tacrine Derivatives with a Combination of Acetylcholinesterase Inhibition and Cannabinoid CB1 Receptor Antagonism (2010) J. Med. Chem., 53, pp. 1338-1346
dc.relation.referencesMeng, X.-Y., Zhang, H.-X., Mezei, M., Cui, M., Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery (2011) Curr. Comput.-Aided Drug Des., 7, pp. 146-157
dc.relation.referencesMorris, G.M., Lim-Wilby, M., Kukol, A., Molecular Docking (2008) Molecular Modeling of Proteins, pp. 365-382. , Methods Molecular Biology
dc.relation.referencesHumana Press: Totowa, NJ
dc.relation.referencesDiago, L.A., Moreno, E., Evaluation of Geometric Complementarity between Molecular Surfaces Using Compactly Supported Radial Basis Functions (2009) IEEE/ACM Trans. Comput. Biol. Bioinf., 6, pp. 689-694
dc.relation.referencesMylonas, S.K., Axenopoulos, A., Daras, P., DeepSurf: A Surface-Based Deep Learning Approach for the Prediction of Ligand Binding Sites on Proteins (2021) Bioinformatics, 37, pp. 1681-1690
dc.relation.referencesGupta, A., Mukherjee, A., Capturing Surface Complementarity in Proteins Using Unsupervised Learning and Robust Curvature Measure (2022) Proteins, 90, p. 1669
dc.relation.referencesHarris, R., Olson, A.J., Goodsell, D.S., Automated Prediction of Ligand-Binding Sites in Proteins (2008) Proteins, 70, pp. 1506-1517
dc.relation.referencesDi Rienzo, L., Milanetti, E., Alba, J., D'Abramo, M., Quantitative Characterization of Binding Pockets and Binding Complementarity by Means of Zernike Descriptors (2020) J. Chem. Inf. Model., 60, pp. 1390-1398
dc.relation.referencesMorris, R.J., Najmanovich, R.J., Kahraman, A., Thornton, J.M., Real Spherical Harmonic Expansion Coefficients as 3D Shape Descriptors for Protein Binding Pocket and Ligand Comparisons (2005) Bioinformatics, 21, pp. 2347-2355
dc.relation.referencesLaurie, A.T.R., Jackson, R.M., Q-SiteFinder: An Energy-Based Method for the Prediction of Protein-Ligand Binding Sites (2005) Bioinformatics, 21, pp. 1908-1916
dc.relation.referencesWeisel, M., Proschak, E., Schneider, G., PocketPicker: Analysis of Ligand Binding-Sites with Shape Descriptors (2007) Chem. Cent. J., 1, p. 7
dc.relation.referencesAn, J., Totrov, M., Abagyan, R., Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes (2005) Mol. Cell. Proteomics, 4, pp. 752-761
dc.relation.referencesIvetac, A., McCammon, J.A., A Molecular Dynamics Ensemble-Based Approach for the Mapping of Druggable Binding Sites (2012) Methods Mol. Biol., 819, pp. 3-12
dc.relation.referencesTan, Y.S., Reeks, J., Brown, C.J., Thean, D., Ferrer Gago, F.J., Yuen, T.Y., Goh, E.T.L., Verma, C.S., Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design (2016) J. Phys. Chem. Lett., 7, pp. 3452-3457
dc.relation.referencesGlaser, F., Morris, R., Najmanovich, R., Laskowski, R., Thornton, J., A Method for Localizing Ligand Binding Pockets in Protein Structures (2006) Proteins, 62, p. 479
dc.relation.referencesGuo, F., Wang, L., Computing the Protein Binding Sites (2012) BMC Bioinf., 13, p. S2
dc.relation.referencesCapra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M., Funkhouser, T.A., Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure (2009) PLoS Comput. Biol., 5
dc.relation.referencesBallester, P.J., Westwood, I., Laurieri, N., Sim, E., Richards, W.G., Prospective Virtual Screening with Ultrafast Shape Recognition: The Identification of Novel Inhibitors of Arylamine N-Acetyltransferases (2010) J. R. Soc., Interface, 7, pp. 335-342
dc.relation.referencesBerenger, F., Voet, A., Lee, X.Y., Zhang, K.Y., A Rotation-Translation Invariant Molecular Descriptor of Partial Charges and Its Use in Ligand-Based Virtual Screening (2014) J. Cheminf., 6, p. 23
dc.relation.referencesKumar, A., Zhang, K.Y.J., Prospective Evaluation of Shape Similarity Based Pose Prediction Method in D3R Grand Challenge 2015 (2016) J. Comput.-Aided Mol. Des., 30, pp. 685-693
dc.relation.referencesLiu, H., Lin, F., Qian, K., Seah, H.S., Lee, Y.T., Visual Analysis with Dynamic Geometric Complementarity and Physicochemical Matching in Protein Docking (2014) 2014 18th International Conference on Information Visualisation, pp. 315-320
dc.relation.referencesKumar, A., Zhang, K.Y.J., Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery (2018) Front. Chem., 6, p. 315
dc.relation.referencesDi Rienzo, L., Milanetti, E., Alba, J., D'Abramo, M., Quantitative Characterization of Binding Pockets and Binding Complementarity by Means of Zernike Descriptors (2020) J. Chem. Inf. Model., 60, pp. 1390-1398
dc.relation.referencesDas, D., Maeda, K., Hayashi, Y., Gavande, N., Desai, D.V., Chang, S.B., Ghosh, A.K., Mitsuya, H., Insights into the Mechanism of Inhibition of CXCR4: Identification of Piperidinylethanamine Analogs as Anti-HIV-1 Inhibitors (2015) Antimicrob. Agents Chemother., 59, pp. 1895-1904
dc.relation.referencesSalo, H.S., Laitinen, T., Poso, A., Jarho, E., Lahtela-Kakkonen, M., Identification of Novel SIRT3 Inhibitor Scaffolds by Virtual Screening (2013) Bioorg. Med. Chem. Lett., 23, pp. 2990-2995
dc.relation.referencesKendall, D.G., Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces (1984) Bull. Lond. Math. Soc., 16, pp. 81-121
dc.relation.referencesGoodall, C., Mardia, K., Multivariate Aspects of Shape Theory (1993) Ann. Stat., 21, p. 848
dc.relation.referencesBerger, M., Berger, M., Riemannian Manifolds as Metric Spaces and the Geometric Meaning of Sectional and Ricci Curvature (2003) A Panoramic View of Riemannian Geometry, pp. 221-297. , Springer: Berlin, Heidelberg
dc.relation.referencesMackerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins (1998) J. Phys. Chem. B, 102, pp. 3586-3616
dc.relation.referencesWeiner, S.J., Kollman, P.A., Nguyen, D.T., Case, D.A., An All Atom Force Field for Simulations of Proteins and Nucleic Acids (1986) J. Comput. Chem., 7, pp. 230-252
dc.relation.referencesGoldstein, M., Wooff, D., (2007) Bayes Linear Statistics
dc.relation.referencesWiley Series in Probability and Statistics, pp. 509-516. , John Wiley & Sons, Ltd
dc.relation.referencesQuintero, J.H., Mariño, A., Šiller, L., Restrepo-Parra, E., Caro-Lopera, F.J., Rocking Curves of Gold Nitride Species Prepared by Arc Pulsed-Physical Assisted Plasma Vapor Deposition (2017) Surf. Coat. Technol., 309, pp. 249-257
dc.relation.referencesValencia, G.M., Anaya, J.A., Velásquez, É.A., Ramo, R., Caro-Lopera, F.J., About Validation-Comparison of Burned Area Products (2020) Remote Sens., 12, p. 3972
dc.relation.referencesArias, E., Jose Caro-Lopera, F.J., Flórez, E., Fredy Pérez-Torres, J., (2019) Two Novel Approaches Based on the Thompson Theory and Shape Analysis for Determination of Equilibrium Structures of Nanoclusters: Cu8, Ag8 and Ag18 As Study Cases, 1247, p. 12008
dc.relation.referencesKlingenberg, C.P., Walking on Kendall's Shape Space: Understanding Shape Spaces and Their Coordinate Systems (2020) Evol. Biol., 47, pp. 334-352
dc.relation.referencesRudemo, M., Statistical Shape Analysis. I. L. Dryden and K. V. Mardia, Wiley, Chichester 1998. No. of Pages: Xvii+347. Price: £60.00.ISBN 0-471-95816-6 (2000) Stat. Med., 19, pp. 2716-2717
dc.relation.referencesCaro-Lopera, F., Díaz-García, J.A., González-Farías, G., Noncentral Elliptical Configuration Density (2010) J. Multivariate Anal., 101, p. 32
dc.relation.referencesDíaz-García, J., Caro-Lopera, F., Estimation of Mean Form and Mean Form Difference under Elliptical Laws (2017) Electron. J. Stat., 11, p. 2424
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Generalised Shape Theory Via Pseudo-Wishart Distribution (2013) Sankhya, Ser. A, 75, pp. 253-276
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F., J. Statistical Theory of Shape under Elliptical Models and Singular Value Decompositions (2012) J. Multivariate Anal., 103, pp. 77-92
dc.relation.referencesTsujikawa, H., Sato, K., Wei, C., Saad, G., Sumikoshi, K., Nakamura, S., Terada, T., Shimizu, K., Development of a Protein-Ligand-Binding Site Prediction Method Based on Interaction Energy and Sequence Conservation (2016) J. Struct. Funct. Genomics, 17, pp. 39-49
dc.relation.referencesMorris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791
dc.relation.referencesEnroth, C., Eger, B.T., Okamoto, K., Nishino, T., Nishino, T., Pai, E.F., Crystal Structures of Bovine Milk Xanthine Dehydrogenase and Xanthine Oxidase: Structure-Based Mechanism of Conversion (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 10723-10728
dc.relation.referencesCao, H., Pauff, J.M., Hille, R., Substrate Orientation and Catalytic Specificity in the Action of Xanthine Oxidase (2010) J. Biol. Chem., 285, pp. 28044-28053
dc.relation.referencesSchmidt, H.M., Kelley, E.E., Straub, A.C., The Impact of Xanthine Oxidase (XO) on Hemolytic Diseases (2019) Redox Biol., 21, p. 101072
dc.relation.referencesSekizuka, H., Uric Acid, Xanthine Oxidase, and Vascular Damage: Potential of Xanthine Oxidoreductase Inhibitors to Prevent Cardiovascular Diseases (2022) Hypertens. Res., 45, p. 772
dc.relation.referencesFernandez, M.L., Upton, Z., Shooter, G.K., Uric Acid and Xanthine Oxidoreductase in Wound Healing (2013) Curr. Rheumatol. Rep., 16, p. 396
dc.relation.referencesRoy, J., Galano, J.-M., Durand, T., Le Guennec, J.-Y., Chung-Yung Lee, J.C.-Y., Physiological Role of Reactive Oxygen Species as Promoters of Natural Defenses (2017) FASEB J., 31, pp. 3729-3745
dc.relation.referencesMalik, U.Z., Hundley, N.J., Romero, G., Radi, R., Freeman, B.A., Tarpey, M.M., Kelley, E.E., Febuxostat Inhibition of Endothelial-Bound XO: Implications for Targeting Vascular ROS Production (2011) Free Radicals Biol. Med., 51, pp. 179-184
dc.relation.referencesOkamoto, K., Eger, B.T., Nishino, T., Kondo, S., Pai, E.F., Nishino, T., An Extremely Potent Inhibitor of Xanthine Oxidoreductase. Crystal Structure of the Enzyme-Inhibitor Complex and Mechanism of Inhibition (2003) J. Biol. Chem., 278, pp. 1848-1855
dc.relation.referencesYusuff, O.K., Abdul Raheem, M.A.O., Mukadam, A.A., Sulaimon, R.O., Kinetics and Mechanism of the Antioxidant Activities of C. Olitorius and V. Amygdalina by Spectrophotometric and DFT Methods (2019) ACS Omega, 4, pp. 13671-13680
dc.relation.references(2014) Core. R: A Language and Environment for Statistical Computing, , R Team. R Foundation for Statistical Computing: Vienna, Austria
dc.relation.referencesTrott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading (2009) J. Comput. Chem., 31, p. 455
dc.relation.referencesHumphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
dc.relation.referencesTeles Fujishima, M.A., Silva, N.D.S.R.D., Ramos, R.D.S., Batista Ferreira, E.F., Santos, K.L.B.D., Silva, C.H.T.D.P.D., Silva, J.O.D., Santos, C.B.R.D., An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella Americana Linn (2018) Pharmaceuticals, 11, p. 72
dc.relation.referencesLin, H.-C., Tsai, S.-H., Chen, C.-S., Chang, Y.-C., Lee, C.-M., Lai, Z.-Y., Lin, C.-M., Structure-Activity Relationship of Coumarin Derivatives on Xanthine Oxidase-Inhibiting and Free Radical-Scavenging Activities (2008) Biochem. Pharmacol., 75, pp. 1416-1425
dc.relation.referencesArdjani, A.T.E., Mekelleche, S., Analysis of the Antioxidant Activity of 4-(5-Chloro-2-Hydroxyphenylamino)-4-Oxobut-2-Enoic Acid Derivatives Using Quantum-Chemistry Descriptors and Molecular Docking (2016) J. Mol. Model., 22, p. 302
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record