Mostrar el registro sencillo del ítem

dc.contributor.authorBousquet P.A
dc.contributor.authorManna D
dc.contributor.authorSandvik J.A
dc.contributor.authorArntzen M.Ø
dc.contributor.authorMoreno E
dc.contributor.authorSandvig K
dc.contributor.authorKrengel U.
dc.date.accessioned2023-10-24T19:26:05Z
dc.date.available2023-10-24T19:26:05Z
dc.date.created2022
dc.identifier.issn16643224
dc.identifier.urihttp://hdl.handle.net/11407/8116
dc.description.abstractCancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7. Copyright © 2022 Bousquet, Manna, Sandvik, Arntzen, Moreno, Sandvig and Krengel.eng
dc.language.isoeng
dc.publisherFrontiers Media S.A.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85142428827&doi=10.3389%2ffimmu.2022.994790&partnerID=40&md5=d7e5844dbe6a67c6bd234f87bb3c00bf
dc.sourceFront. Immunol.
dc.sourceFrontiers in Immunologyeng
dc.subject14F7eng
dc.subjectcytoskeletoneng
dc.subjectGangliosideeng
dc.subjectGlycosphingolipideng
dc.subjectImmunotherapyeng
dc.subjectNeuGc GM3/Neu5Gc GM3eng
dc.subjectSILACeng
dc.subjectTranscription factorseng
dc.titleSILAC-based quantitative proteomics and microscopy analysis of cancer cells treated with the N-glycolyl GM3-specific anti-tumor antibody 14F7eng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.3389/fimmu.2022.994790
dc.relation.citationvolume13
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationBousquet, P.A., Department of Chemistry, University of Oslo, Oslo, Norway
dc.affiliationManna, D., Department of Chemistry, University of Oslo, Oslo, Norway
dc.affiliationSandvik, J.A., Department of Physics, University of Oslo, Oslo, Norway
dc.affiliationArntzen, M.Ø., Department of Biosciences, University of Oslo, Oslo, Norway
dc.affiliationMoreno, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationSandvig, K., Department of Biosciences, University of Oslo, Oslo, Norway, Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway, Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
dc.affiliationKrengel, U., Department of Chemistry, University of Oslo, Oslo, Norway
dc.relation.referencesKruger, S., Ilmer, M., Kobold, S., Cadilha, B.L., Endres, S., Ormanns, S., Advances in cancer immunotherapy 2019 - latest trends (2019) J Exp Clin Cancer Res, 38, p. 268. ,  
dc.relation.referencesDiken, M., Ravoori, S., Brodsky, A.N., Translating science into survival: Report on the fourth international cancer immunotherapy conference (2019) Cancer Immunol Res, 7, pp. 2-5. , –,  
dc.relation.referencesWaldman, A.D., Fritz, J.M., Lenardo, M.J., A guide to cancer immunotherapy: from T cell basic science to clinical practice (2020) Nat Rev Immunol, 20. ,  
dc.relation.referencesKimiz-Gebologlu, I., Gulce-Iz, S., Biray-Avci, C., Monoclonal antibodies in cancer immunotherapy (2018) Mol Biol Rep, 45. ,  
dc.relation.referencesKaplon, H., Chenoweth, A., Crescioli, S., Reichert, J.M., Antibodies to watch in 2022 (2022) mAbs, 14. ,  
dc.relation.referencesChan, A.C., Carter, P.J., Therapeutic antibodies for autoimmunity and inflammation (2010) Nat Rev Immunol, 10. ,  
dc.relation.referencesLiu, X., Pop, L.M., Vitetta, E.S., Engineering therapeutic monoclonal antibodies (2008) Immunol Rev, 222, pp. 9-27. , –,  
dc.relation.referencesHellström, I., Garrigues, H.J., Garrigues, U., Hellström, K.E., Highly tumor-reactive, internalizing, mouse monoclonal antibodies to le(y)-related cell surface antigens (1990) Cancer Res, 50
dc.relation.referencesGarrigues, J., Garrigues, U., Hellström, I., Hellström, K.E., Ley specific antibody with potent anti-tumor activity is internalized and degraded in lysosomes (1993) Am J Pathol, 142
dc.relation.referencesMatsouka, S., Asano, Y., Sano, K., Kishimoto, H., Yamashita, I., Yorifuji, H., A novel type of cell death of lymphocytes induced by a monoclonal antibody without participation of complement (1995) J Exp Med, 181. ,  
dc.relation.referencesBhat, N.M., Bieber, M.M., Stevenson, F.K., Teng, N.N.H., Rapid cytotoxicity of human b lymphocytes induced by VH4-34 (VH4.21) gene-encoded monoclonal antibodies (1996) Clin Exp Immunol, 105. ,  
dc.relation.referencesZhang, C., Xu, Y., Gu, J., Schlossman, S.F., A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis (1998) Proc Natl Acad Sci U.S.A, 95. ,  
dc.relation.referencesMa, F., Zhang, C., Prasad, K.V.S., Freeman, G.J., Schlossman, S.F., Molecular cloning of porimin, a novel cell surface receptor mediating oncotic cell death (2001) Proc Natl Acad Sci U.S.A, 98. ,  
dc.relation.referencesFernández-Marrero, Y., López-Requena, A., Lonely killers: effector cell- and complement-independent non-proapoptotic cytotoxic antibodies inducing membrane lesions (2011) mAbs, 3. ,  
dc.relation.referencesMalykh, Y.N., Schauer, R., Shaw, L., N-glycolylneuraminic acid in human tumours (2001) Biochimie, 83. ,  
dc.relation.referencesMüthing, J., Steuer, H., Peter-Katalinić, J., Marx, U., Bethke, U., Neumann, U., Expression of gangliosides GM3 (NeuAc) and GM3 (NeuGc) in myelomas and hybridomas of mouse, rat, and human origin (1994) J Biochem, 116, pp. 64-73. , –,  
dc.relation.referencesVázquez, A.M., Alfonso, M., Lanne, B., Karlsson, K.-A., Carr, A., Barroso, O., Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids (1995) Hybridoma, 14. ,  
dc.relation.referencesMarquina, G., Waki, H., Fernandez, L.E., Kon, K., Carr, A., Valiente, O., Gangliosides expressed in human breast cancer (1996) Cancer Res, 56
dc.relation.referencesCarr, A., Mullet, A., Mazorra, Z., Vázquez, A.M., Alfonso, M., Mesa, C., A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors (2000) Hybridoma, 19. ,  
dc.relation.referencesCarr, A., Mesa, C., del Carmen Arango, M., Vázquez, A.M., Fernández, L.E., In vivo and in vitro anti-tumor effect of 14F7 monoclonal antibody (2002) Hybrid Hybridomics, 21. ,  
dc.relation.referencesvan Cruijsen, H., Ruiz, M.G., van der Valk, P., de Gruijl, T.D., Giaccone, G., Tissue micro array analysis of ganglioside n-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer (2009) BMC Cancer, 9. ,  
dc.relation.referencesScursoni, A.M., Galluzzo, L., Camarero, S., Lopez, J., Lubieniecki, F., Sampor, C., Detection of n-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer (2011) Clin Dev Immunol, 2011. ,  
dc.relation.referencesBlanco, R., Rengifo, E., Ce, R., Cedeño, M., Frómeta, M., Carr, A., Immunohistochemical reactivity of the 14F7 monoclonal antibody raised against n-glycolyl GM3 ganglioside in some benign and malignant skin neoplasms (2011) ISRN Dermatol, 2011. ,  
dc.relation.referencesBlanco, R., Rengifo, E., Cedeño, M., Ce, R., Df, A., Carr, A., Immunoreactivity of the 14F7 mab raised against n-glycolyl GM3 ganglioside in epithelial malignant tumors from digestive system (2011) ISRN Gastroenterol, 2011. ,  
dc.relation.referencesTorbidoni, A.V., Scursoni, A., Camarero, S., Segatori, V., Gabri, M., Alonso, D., Immunoreactivity of the 14F7 mab raised against N-glycolyl GM3 ganglioside in retinoblastoma tumours (2015) Acta Ophthalmol, 93. ,  
dc.relation.referencesPilco-Janeta, D., de la Cruz Puebla, M., Soriano, J., Osorio, M., Caballero, I., Pérez, A.C., Aberrant expression of n-glycolyl GM3 ganglioside is associated with the aggressive biological behavior of human sarcomas (2019) BMC Cancer, 19, p. 556. ,  
dc.relation.referencesRojas, G., Talavera, A., Munoz, Y., Rengifo, E., Krengel, U., Ångström, J., Light chain shuffling results in successful phage display of antibody fragments to N-glycolyl GM3 ganglioside (2004) J Immunol Meth, 293, p. 71. ,  
dc.relation.referencesBjerregaard-Andersen, K., Johannesen, H., Abdel-Rahman, N., Heggelund, J.E., Hoås, H.M., Abraha, F., Crystal structure of an l chain optimised 14F7 anti-ganglioside fv suggests a unique tumour-specificity through an unusual h-chain CDR3 architecture (2018) Sci Rep, 8, p. 10836. ,  
dc.relation.referencesBjerregaard-Andersen, K., Johannesen, H., Abraha, F., Šakanović, A., Großer, D., Coskun, Ü., Insight into glycosphingolipid crypticity: Crystal structure of the anti-tumor antibody 14F7 and recognition of NeuGc GM3 ganglioside (2020) bioRxiv, 2020. ,  
dc.relation.referencesKrengel, U., Olsson, L.-L., Martínez, C., Talavera, A., Rojas, G., Mier, E., Structure and molecular interactions of a unique anti-tumor antibody specific for N-glycolyl GM3 (2004) J Biol Chem, 279, p. 5597. ,  
dc.relation.referencesBjerregaard-Andersen, K., Abraha, F., Johannesen, H., Oscarson, S., Moreno, E., Krengel, U., Key role of a structural water molecule for the specificity of 14F7 − an antitumor antibody targeting the NeuGc GM3 ganglioside (2021) Glycobiology, 31, p. 1500. ,  
dc.relation.referencesRojas, G., Pupo, A., Gómez, S., Krengel, U., Moreno, E., Engineering the binding site of an antibody against N-glycolyl GM3: from functional mapping to novel anti-ganglioside specificities (2013) ACS Chem Biol, 8, p. 376. ,  
dc.relation.referencesPiperno, G., López-Requena, A., Predonzani, A., Dorvignit, D., Labrada, M., Zentilin, L., Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody (2015) Gene Ther, 22. ,  
dc.relation.referencesFernández-Marrero, Y., Roque-Navarro, L., Hernández, T., Dorvignit, D., Molina-Pérez, M., González, A., A cytotoxic humanized anti-ganglioside antibody produced in a murine cell line defective of N-glycolylated-glycoconjugates (2011) Immunobiology, 216. ,  
dc.relation.referencesDorvignit, D., García-Martínez, L., Rossin, A., Sosa, K., Viera, J., Hernández, T., Antitumor and cytotoxic properties of a humanized antibody specific for the GM3(Neu5Gc) ganglioside (2015) Immunobiology, 220. ,  
dc.relation.referencesCutillo, G., Saariaho, A.-H., Meri, S., Physiology of gangliosides and the role of antiganglioside antibodies in human diseases (2020) Cell Mol Immunol, 17. ,  
dc.relation.referencesHaji-Ghassemi, O., Blackler, R.J., Young, N.M., Evans, S.V., Antibody recognition of carbohydrate epitopes (2015) Glycobiology, 25. ,  
dc.relation.referencesCasadesús, A.V., Fernández-Marrero, Y., Clavell, M., Ja, G., Hernández, T., Moreno, E., A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells (2013) Glycoconjugate J, 30. ,  
dc.relation.referencesRoque-Navarro, L., Chakrabandhu, K., de León, J., Rodríguez, S., Toledo, C., Carr, A., Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity (2008) Mol Cancer Ther, 7. ,  
dc.relation.referencesKroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Classification of cell death: recommendations of the nomenclature committee on cell death 2009 (2009) Cell Death Differ, 16, pp. 3-11. , –,  
dc.relation.referencesD'Arcy, M.S., Cell death: a review of the major forms of apoptosis, necrosis and autophagy (2019) Cell Biol Int, 43. ,  
dc.relation.referencesTan, H.L., Fong, W.J., Lee, E.H., Yap, M., Choo, A., mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis (2009) Stem Cells, 27. ,  
dc.relation.referencesHorwacik, I., Rokita, H., Targeting of tumor-associated gangliosides with antibodies affects signaling pathways and leads to cell death including apoptosis (2015) Apoptosis, 20. ,  
dc.relation.referencesDorvignit, D., Boligan, K.F., Relova-Hernández, E., Clavell, M., López, A., Labrada, M., Antitumor effects of the GM3(Neu5Gc) ganglioside-specific humanized antibody 14F7hT against Cmah-transfected cancer cells (2019) Sci Rep, 9, pp. 1-12. , –,  
dc.relation.referencesBousquet, P.A., Sandvik, J.A., Arntzen, M.Ø., Jeppesen Edin, N.F., Christoffersen, S., Krengel, U., Hypoxia strongly affects mitochondrial ribosomal proteins and translocases, as shown by quantitative proteomics of HeLa cells (2015) Int J Proteomics, 2015. ,  
dc.relation.referencesBousquet, P.A., Sandvik, J.A., Jeppesen Edin, N.F., Krengel, U., Hypothesis: Hypoxia induces de novo synthesis of NeuGc gangliosides in humans through CMAH domain substitute (2018) Biochem Biophys Res Commun, 495. ,  
dc.relation.referencesOng, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics (2002) Mol Cell Proteomics, 1. ,  
dc.relation.referencesKoehler, C.J., Strozynski, M., Kozielski, F., Treumann, A., Thiede, B., Isobaric peptide termini labeling for MS/MS-based quantitative proteomics (2009) J Proteome Res, 8. ,  
dc.relation.referencesCox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification (2008) Nat Biotechnol, 26. ,  
dc.relation.referencesCox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., Mann, M., Andromeda: a peptide search engine integrated into the MaxQuant environment (2011) J Proteome Res, 10. ,  
dc.relation.referencesHuang, D.W., Sherman, B.T., Lempicki, R.A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists (2009) Nucleic Acids Res, 37, pp. 1-13. , –,  
dc.relation.referencesHuang, D.W., Sherman, B.T., Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources (2009) Nat Protoc, 4, pp. 44-57. , –,  
dc.relation.referencesPerez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J., The PRIDE database and related tools and resources in 2019: improving support for quantification data (2019) Nucleic Acids Res, 47. ,  
dc.relation.referencesEraslan, S., Kayserili, H., Apak, M.Y., Kirdar, B., Identification of point mutations in Turkish DMD/BMD families using multiplex-single stranded conformation analysis (SSCA) (1999) Eur J Hum Genet, 7. ,  
dc.relation.referencesFeng, J., Yan, J., Buzin, C.H., Sommer, S.S., Towbin, J.A., Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy (2002) J Am Coll Cardiol, 40. ,  
dc.relation.referencesPrior, T.W., Papp, A.C., Snyder, P.J., Burghes, A.H.M., Bartolo, C., Sedra, M.S., A missense mutation in the dystrophin gene in a duchenne muscular dystrophy patient (1993) Nat Genet, 4. ,  
dc.relation.referencesBakker, A.J., Head, I., Williams, D.A., Stephenson, D.G., Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice (1993) J Physiol, 460, pp. 1-13. , –,  
dc.relation.referencesBulfield, G., Siller, W.G., Wight, P.A.L., Moore, K.J., X Chromosome-linked muscular dystrophy (mdx) in the mouse (1984) Proc Natl Acad Sci U.S.A, 81. ,  
dc.relation.referencesCullen, M.J., Jaros, E., Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. comparison with duchenne muscular dystrophy (1988) Acta Neuropathol, 77, pp. 69-81. , –,  
dc.relation.referencesTurner, P.R., Fong, P., Denetclaw, W.F., Steinhardt, R.A., Increased calcium influx in dystrophic muscle (1991) J Cell Biol, 115. ,  
dc.relation.referencesCarpenter, S., Karpati, G., Duchenne muscular dystrophy: plasma membrane loss initiates muscle cell necrosis unless it is repaired (1979) Brain, 102. ,  
dc.relation.referencesFranco, A., Lansman, J.B., Calcium entry through stretch-inactivated ion channels in mdx myotubes (1990) Nature, 344. ,  
dc.relation.referencesMokri, B., Engel, A.G., Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber (1975) Neurology, 25. ,  
dc.relation.referencesMorgan, A.J., Platt, F.M., Lloyd-Evans, E., Galione, A., Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease (2011) Biochem J, 439. ,  
dc.relation.referencesSchuyler, S.C., Pellman, D., Microtubule "plus-end-tracking proteins": The end is just the beginning (2001) Cell, 105. ,  
dc.relation.referencesAkhmanova, A., Hoogenraad, C.C., Drabek, K., Stepanova, T., Dortland, B., Verkerk, T., Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts (2001) Cell, 104. ,  
dc.relation.referencesBornens, M., Centrosome composition and microtubule anchoring mechanisms (2002) Curr Opin Cell Biol, 14, pp. 25-34. , –,  
dc.relation.referencesDesai, A., Mitchison, T.J., Microtubule polymerization dynamics (1997) Annu Rev Cell Dev Biol, 13, pp. 83-117. , –,  
dc.relation.referencesGaljart, N., CLIPs and CLASPs and cellular dynamics (2005) Nat Rev Mol Cell Biol, 6. ,  
dc.relation.referencesMimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G., Sasaki, H., Matsui, C., Severin, F., CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex (2005) J Cell Biol, 168. ,  
dc.relation.referencesGruneberg, U., Neef, R., Li, X., Chan, E.H.Y., Chalamalasetty, R.B., Nigg, E.A., KIF14 and citron kinase act together to promote efficient cytokinesis (2006) J Cell Biol, 172. ,  
dc.relation.referencesCarleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., RNA Interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure (2006) Mol Cell Biol, 26. ,  
dc.relation.referencesMolina, I., Baars, S., Brill, J.A., Hales, K.G., Fuller, M.T., Ripoll p. a chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila (1997) J Cell Biol, 139. ,  
dc.relation.referencesNigg, E.A., Mitotic kinases as regulators of cell division and its checkpoints (2001) Nat Rev Mol Cell Biol, 2, pp. 21-32. , –,  
dc.relation.referencesZhu, C., Zhao, J., Bibikova, M., Leverson, J.D., Bossy-Wetzel, E., Fan, J.-B., Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference (2005) Mol Biol Cell, 16. ,  
dc.relation.referencesKuopio, T., Kankaanranta, A., Jalava, P., Kronqvist, P., Kotkansalo, T., Weber, E., Cysteine proteinase inhibitor cystatin a in breast cancer (1998) Cancer Res, 58
dc.relation.referencesBlaydon, D.C., Nitoiu, D., Eckl, K.-M., Cabral, R.M., Bland, P., Hausser, I., Mutations in CSTA, encoding cystatin a, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion (2011) Am J Hum Genet, 89. ,  
dc.relation.referencesButinar, M., Prebanda, M.T., Rajković, J., Jerič, B., Stoka, V., Peters, C., Stefin b deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model (2014) Oncogene, 33. ,  
dc.relation.referencesYang, C., Pring, M., Wear, M.A., Huang, M., Cooper, J.A., Svitkina, T.M., Mammalian CARMIL inhibits actin filament capping by capping protein (2005) Dev Cell, 9. ,  
dc.relation.referencesYao, Y.-L., Yang, W.-M., The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity (2003) J Biol Chem, 278. ,  
dc.relation.referencesMazumdar, A., Wang, R.-A., Mishra, S.K., Adam, L., Bagheri-Yarmand, R., Mandal, M., Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor (2001) Nat Cell Biol, 3. ,  
dc.relation.referencesTalukder, A.H., Mishra, S.K., Mandal, M., Balasenthil, S., Mehta, S., Sahin, A.A., MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions (2003) J Biol Chem, 278. ,  
dc.relation.referencesLee, M.-H., Na, H., Na, T.-Y., Shin, Y.-K., Seong, J.-K., Lee, M.-O., Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis b virus X protein during hepatocarcinogenesis (2012) Oncogenesis, 1. ,  
dc.relation.referencesOh, J., Liu, Z.-X., Feng, G.H., Raposo, G., Spritz, R.A., The hermansky-pudlak syndrome (HPS) protein is part of a high molecular weight complex involved in biogenesis of early melanosomes (2000) Hum Mol Genet, 9. ,  
dc.relation.referencesEguchi, Y., Shimizu, S., Tsujimoto, Y., Intracellular ATP levels determine cell death fate by apoptosis or necrosis (1997) Cancer Res, 57
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem