Show simple item record

dc.contributor.authorDuque L
dc.contributor.authorGuerrero G
dc.contributor.authorColorado J.H
dc.contributor.authorRestrepo J.A
dc.contributor.authorVélez E.
dc.description.abstractAtorvastatin (ATV) inhibits the HMG-CoA reductase. This compound is believed to exhibit high radical scavenging abilities against lipoprotein oxidation, warranting an investigation of its antioxidant capacity. In this study a series of quantum chemical parameters were calculated, at B3LYP functional and 6-31+G(d,p) basis set and integral equation formalism (IEF-PCM) method, to describe molecular properties and clarify the radical scavenging mechanism of Atorvastatin and its hydroxy ortho and para metabolites. Calculations of global reactivity descriptors and the thermodynamic parameters suggested that both the ATV and its o-OH and p-OH metabolites are favorable antioxidants, and that the main antioxidant mechanism follows the sequential proton loss electron transfer (SPLET). The hydrogen of O–H group of carboxylic acid on the three compounds is the most likely for abstraction, indicating that inhibiting free radicals is mainly due to this hydrogen. ATV and its metabolites have lower values of Proton Affinity (PA) than ascorbic acid. © 2022 The Author(s)eng
dc.publisherElsevier B.V.
dc.sourceComput. Theor. Chem.
dc.sourceComputational and Theoretical Chemistryeng
dc.subjectAntioxidant mechanismeng
dc.subjectGlobal reactivity descriptorseng
dc.titleTheoretical insight into mechanism of antioxidant capacity of atorvastatin and its o-hydroxy and p-hydroxy metabolites, using DFT methodseng
dc.publisher.programCiencias Básicasspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationDuque, L., Laboratorios Ecar S.A. Grupo de Innovación y Desarrollo de Laboratorios Ecar GIdLE, Colombia
dc.affiliationGuerrero, G., Laboratorios Ecar S.A. Grupo de Innovación y Desarrollo de Laboratorios Ecar GIdLE, Colombia
dc.affiliationColorado, J.H., Laboratorios Ecar S.A. Grupo de Innovación y Desarrollo de Laboratorios Ecar GIdLE, Colombia
dc.affiliationRestrepo, J.A., Facultad de Ciencias Básicas, Grupo de Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, Colombia
dc.affiliationVélez, E., Facultad de Ciencias Básicas, Grupo de Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, Colombia
dc.relation.references(2011), Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Cardiovascular-Diseases-(Cvds), WHO, Cardiovascular diseases (CVDs)
dc.relation.referencesKhan, M.A., Hashim, M.J., Mustafa, H., Baniyas, M.Y., (2020), S.K.B.M. al Suwaidi, R. AlKatheeri, F.M.K. Alblooshi, M.E.A.H. Almatrooshi, M.E.H. Alzaabi, R.S. al Darmaki, S.N.A.H. Lootah, Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study, Cureus. 12 e9349
dc.relation.referencesRoth, G.A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S.F., Abyu, G., Ahmed, M., Malta, C.A., (2017), Castañeda-Orjuela, J. Castillo-Rivas, F. Catalá-López, J.-Y. Choi, H. Christensen, M. Cirillo, L. Cooper, M. Criqui, D. Cundiff, A. Damasceno, L. Dandona, R. Dandona, K. Davletov, S. Dharmaratne, P. Dorairaj, M. Dubey, R. Ehrenkranz, M. el Sayed Zaki, E.J.A. Faraon, A. Esteghamati, T. Farid, M. Farvid, V. Feigin, E.L. Ding, G. Fowkes, T. Gebrehiwot, R. Gillum, A. Gold, P. Gona, R. Gupta, T.D. Habtewold, N. Hafezi-Nejad, T. Hailu, G.B. Hailu, G. Hankey, H.Y. Hassen, K.H. Abate, R. Havmoeller, S.I. Hay, M. Horino, P.J. Hotez, K. Jacobsen, S. James, M. Javanbakht, P. Jeemon, D. John, J. Jonas, Y. Kalkonde, C. Karimkhani, A. Kasaeian, Y. Khader, A. Khan, Y.-H. Khang, S. Khera, A.T. Khoja, J. Khubchandani, D. Kim, D. Kolte, S. Kosen, K.J. Krohn, G.A. Kumar, G.F. Kwan, D.K. Lal, A. Larsson, S. Linn, A. Lopez, P.A. Lotufo, H.M.A. el Razek, R. Malekzadeh, M. Mazidi, T. Meier, K.G. Meles, G. Mensah, A. Meretoja, H. Mezgebe, T. Miller, E. Mirrakhimov, S. Mohammed, A.E. Moran, K.I. Musa, J. Narula, B. Neal, F. Ngalesoni, G. Nguyen, C.M. Obermeyer, M. Owolabi, G. Patton, J. Pedro, D. Qato, M. Qorbani, K. Rahimi, R.K. Rai, S. Rawaf, A. Ribeiro, S. Safiri, J.A. Salomon, I. Santos, M. Santric Milicevic, B. Sartorius, A. Schutte, S. Sepanlou, M.A. Shaikh, M.-J. Shin, M. Shishehbor, H. Shore, D.A.S. Silva, E. Sobngwi, S. Stranges, S. Swaminathan, R. Tabarés-Seisdedos, N. Tadele Atnafu, F. Tesfay, J.S. Thakur, A. Thrift, R. Topor-Madry, T. Truelsen, S. Tyrovolas, K.N. Ukwaja, O. Uthman, T. Vasankari, V. Vlassov, S.E. Vollset, T. Wakayo, D. Watkins, R. Weintraub, A. Werdecker, R. Westerman, C.S. Wiysonge, C. Wolfe, A. Workicho, G. Xu, Y. Yano, P. Yip, N. Yonemoto, M. Younis, C. Yu, T. Vos, M. Naghavi, C. Murray, Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015, J Am Coll Cardiol. 70 1–25
dc.relation.referencesIstvan, E.S., Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (2002) Am. Heart J., 144 (6), pp. S27-S32
dc.relation.referencesAlenghat, F.J., Davis, A.M., Management of blood cholesterol (2019) JAMA – J. Am. Med. Assoc., 321 (8), p. 800
dc.relation.referencesTaylor, F., Huffman, M.D., Macedo, A.F., Moore, T.H., Burke, M., Davey Smith, G., Ward, K., Gay, H.C., Statins for the primary prevention of cardiovascular disease (2017) Cochrane Database Systemat. Rev., 2021 (9)
dc.relation.referencesVuppalanchi, R., Chalasani, N., Statins for hyperlipidemia in patients with chronic liver disease: are they safe? (2006) Clin. Gastroenterol. Hepatol., 4 (7), pp. 838-839
dc.relation.referencesRohilla, A., Rohilla, S., Kumar, A., Khan, M.U., Deep, A., Pleiotropic effects of statins: A boulevard to cardioprotection (2016) Arab. J. Chem., 9, pp. S21-S27
dc.relation.referencesLiao, J.K., Laufs, U., Pleiotropic effects of statins (2005) Ann. Rev. Pharmacol. Toxicol., 45 (1), pp. 89-118
dc.relation.referencesSuzumura, K., Yasuhara, M., Tanaka, K., Odawara, A., Narita, H., Suzuki, T., An in vitro study of the hydroxyl radical scavenging property of fluvastatin, an HMG-CoA reductase inhibitor (1999) Chem. Pharmaceut. Bull., 47 (7), pp. 1010-1012
dc.relation.referencesChen, M.F., Hsu, H.C., Lee, Y.T., Short-term treatment with low-dose pravastatin attenuates oxidative susceptibility of low-density lipoprotein in hypercholesterolemic patients (1997) Cardiovascular Drugs Therapy., 11
dc.relation.referencesGirona, J., La Ville, A.E., Solà, R., Plana, N., Masana, L., Simvastatin decreases aldehyde production derived from lipoprotein oxidation (1999) Am. J. Cardiol., 83 (6), pp. 846-851
dc.relation.referencesHussein, O., Schlezinger, S., Rosenblat, M., Keidar, S., Aviram, M., Reduced susceptibility of low density lipoprotein (LDL) to lipid peroxidation after fluvastatin therapy is associated with the hypocholesterolemic effect of the drug and its binding to the LDL (1997) Atherosclerosis, 128 (1), pp. 11-18
dc.relation.referencesAviram, M., Dankner, G., Cogan, U., Hochgraf, E., Brook, J.G., Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies (1992) Metabolism, 41 (3), pp. 229-235
dc.relation.referencesHoffman, R., Brook, G.J., Aviram, M., Hypolipidemic drugs reduce lipoprotein susceptibility to undergo lipid peroxidation: in vitro and ex vivo studies (1992) Atherosclerosis, 93 (1-2), pp. 105-113
dc.relation.referencesFranzoni, F., Quiñones-Galvan, A., Regoli, F., Ferrannini, E., Galetta, F., A comparative study of the in vitro antioxidant activity of statins (2003) Int. J. Cardiol., 90 (2-3), pp. 317-321
dc.relation.referencesAthyros, V.G., Tziomalos, K., Karagiannis, A., Mikhailidis, D.P., Atorvastatin: safety and tolerability (2010) Exp. Opin. Drug Saf., 9 (4), pp. 667-674
dc.relation.referencesMira, R., Tony, H., Khetam, H., Aviram, M., Atorvastatin therapy increases monocyte / macrophage paraoxonase 2 expression and reduces oxidative stress in hyprecholesterolemic patients (2005) Lett. Drug Des. Discov., 1
dc.relation.referencesKy, B., Burke, A., Tsimikas, S., Wolfe, M.L., Tadesse, M.G., Szapary, P.O., Witztum, J.L., Rader, D.J., The influence of pravastatin and atorvastatin on markers of oxidative stress in hypercholesterolemic humans (2008) J Am Coll Cardiol., 51 (17), pp. 1653-1662
dc.relation.referencesPerticone, F., Ceravolo, R., Maio, R., Cloro, C., Candigliota, M., Scozzafava, A., Mongiardo, A., Chello, M., Effects of atorvastatin and vitamin C on endothelial function of hypercholesterolemic patients (2000) Atherosclerosis., 152 (2), pp. 511-518
dc.relation.referencesMatafome, P., Monteiro, P., Nunes, E., Louro, T., Amaral, C., Moedas, A., Goncalves, L., Seica, R., Therapeutic association of atorvastatin and insulin in cardiac ischemia: study in a model of type 2 diabetes with hyperlipidemia (2008) Pharmacol. Res., 58 (3-4), pp. 208-214
dc.relation.referencesBolayirli, I.M., Aslan, M., Balci, H., Altug, T., Hacibekiroglu, M., Seven, A., Effects of atorvastatin therapy on hypercholesterolemic rabbits with respect to oxidative stress, nitric oxide pathway and homocysteine (2007) Life Sci., 81 (2), pp. 121-127
dc.relation.referencesRoth, B.D., The discovery and development of atorvastatin, a potent novel hypolipidemic agent (2002) Progr. Med. Chem., 40
dc.relation.referencesIstvan, E.S., Deisenhofer, J., Structural mechanism for statin inhibition of HMG-CoA reductase (2001) Science, 292 (5519), pp. 1160-1164
dc.relation.referencesAlnajjar, R., Mohamed, N., Kawafi, N., Bicyclo[1.1.1]Pentane as Phenyl substituent in atorvastatin drug to improve physicochemical properties: drug-likeness, DFT, pharmacokinetics, docking, and molecular dynamic simulation (2021) J. Mol. Struct., 1230, p. 129628
dc.relation.referencesHoffmann, M., Nowosielski, M., DFT study on hydroxy acid–lactone interconversion of statins: the case of atorvastatin (2008) Org. Biomol. Chem., 6 (19), p. 3527
dc.relation.referencesAviram, M., Rosenblat, M., Bisgaier, C.L., Newton, R.S., Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation (1998) Atherosclerosis., 138 (2), pp. 271-280
dc.relation.referencesPalem, C.R., Patel, S., Pokharkar, V.B., Solubility and stability enhancement of atorvastatin by cyclodextrin complexation (2009) PDA J. Pharm. Sci. Technol., 63, pp. 217-225
dc.relation.referencesKhan, F.N., Dehghan, M.H.G., Enhanced bioavailability of atorvastatin calcium from stabilized gastric resident formulation (2011) AAPS PharmSciTech., 12 (4), pp. 1077-1086
dc.relation.referencesRodde, M.S., Divase, G.T., Devkar, T.B., Tekade, A.R., Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: In vitro, ex vivo, and in vivo studies (2014) BioMed Res. Int., 2014, pp. 1-10
dc.relation.referencesPortes, E., Gardrat, C., Castellan, A., A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids (2007) Tetrahedron., 63 (37), pp. 9092-9099
dc.relation.referencesIngold, K.U., Pratt, D.A., Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective (2014) Chem. Rev., 114 (18), pp. 9022-9046
dc.relation.referencesGalano, A., Raúl Alvarez-Idaboy, J., Computational strategies for predicting free radical scavengers’ protection against oxidative stress: where are we and what might follow? (2019) Int. J. Quantum Chem., 119 (2), p. e25665
dc.relation.referencesHuang, P., Jin, L.-X., Lu, J.-F., Gao, Y.-H., Guo, S.-B., A theoretical study of radical scavenging antioxidant activity of 3-styrylchromone derivatives using DFT based on quantum chemical descriptors (2021) Theoret. Chem. Accounts., 140 (5)
dc.relation.referencesKlein, E., Lukeš, V., Ilčin, M., DFT/B3LYP study of tocopherols and chromans antioxidant action energetics (2007) Chem. Phys., 336 (1), pp. 51-57
dc.relation.referencesParr, R.G., Weitao, Y., (1995) Density-Functional Theory of Atoms and MoleculesDensity-Functional Theory of Atoms and Molecules, , Oxford University Press
dc.relation.referencesParr, R.G., Szentpály, L.V., Liu, S., Electrophilicity index (1999) J. Am. Chem. Soc., 121 (9), pp. 1922-1924
dc.relation.referencesZanjanchi, F., Beheshtian, J., Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study (2019) J. Iran. Chem. Soc., 16 (4), pp. 795-805
dc.relation.referencesRajan, V.K., Hasna, C.K., Muraleedharan, K., The natural food colorant Peonidin from cranberries as a potential radical scavenger – A DFT based mechanistic analysis (2018) Food Chem., 262, pp. 184-190
dc.relation.referencesGupta, V.P., Characterization of Chemical Reactions, Principles and Applications of Quantum (2016) Principles and Applications of Quantum Chemistry, pp. 385-433. , Elsevier
dc.relation.referencesBâldea, I., A quantum chemical study from a molecular transport perspective: Ionization and electron attachment energies for species often used to fabricate single-molecule junctions (2014) Faraday Discussions., 174
dc.relation.referencesGázquez, J.L., Cedillo, A., Vela, A., Electrodonating and electroaccepting powers (2007) J. Phys. Chem. A., 111 (10), pp. 1966-1970
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Foresman, J.B., (2013), J. v. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01
dc.relation.referencesBecke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98 (7), pp. 5648-5652
dc.relation.referencesLee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B., 37 (2), pp. 785-789
dc.relation.referencesLa Rocca, M.V., Rutkowski, M., Ringeissen, S., Gomar, J., Frantz, M.-C., Ngom, S., Adamo, C., Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies (2016) J. Mol. Model., 22 (10)
dc.relation.referencesCancès, E., Mennucci, B., Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to Isotropic and anisotropic dielectrics (1997) J. Chem. Phys., 107 (8), pp. 3032-3041
dc.relation.referencesZhan, C.-G., Nichols, J.A., Dixon, D.A., Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies (2003) J. Phys. Chem. A., 107, pp. 4184-4195
dc.relation.referencesDomingo, L.R., Aurell, M.J., Pérez, P., Contreras, R., Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions (2002) Tetrahedron., 58 (22), pp. 4417-4423
dc.relation.referencesGázquez, J.L., (2008),, Perspectives on the Density Functional Theory of Chemical Reactivity, J Mex Chem Soc. 52 3–10. (accessed May 5, 2022)
dc.relation.referencesXue, Y., Zheng, Y., An, L., Dou, Y., Liu, Y., Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins (2014) Food Chem., 151, pp. 198-206
dc.relation.referencesBenzie, I.F.F., Strain, J.J., (1999), pp. 15-27. , [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration, in
dc.relation.referencesBadarinath, A.V., Mallikarjuna, K., (2010), pp. 1276-1285. , RAo, C. Madhu Sudhana Chetty, S. Ramkanth, T.V.S. Rajan, K. Gnanaprakash, A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations, International Journal of PharmTech Research. 2
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instnameinstname:Universidad de Medellín

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record