dc.contributor.author | Duque L | |
dc.contributor.author | Guerrero G | |
dc.contributor.author | Colorado J.H | |
dc.contributor.author | Restrepo J.A | |
dc.contributor.author | Vélez E. | |
dc.date.accessioned | 2023-10-24T19:26:27Z | |
dc.date.available | 2023-10-24T19:26:27Z | |
dc.date.created | 2022 | |
dc.identifier.issn | 2210271X | |
dc.identifier.uri | http://hdl.handle.net/11407/8145 | |
dc.description.abstract | Atorvastatin (ATV) inhibits the HMG-CoA reductase. This compound is believed to exhibit high radical scavenging abilities against lipoprotein oxidation, warranting an investigation of its antioxidant capacity. In this study a series of quantum chemical parameters were calculated, at B3LYP functional and 6-31+G(d,p) basis set and integral equation formalism (IEF-PCM) method, to describe molecular properties and clarify the radical scavenging mechanism of Atorvastatin and its hydroxy ortho and para metabolites. Calculations of global reactivity descriptors and the thermodynamic parameters suggested that both the ATV and its o-OH and p-OH metabolites are favorable antioxidants, and that the main antioxidant mechanism follows the sequential proton loss electron transfer (SPLET). The hydrogen of O–H group of carboxylic acid on the three compounds is the most likely for abstraction, indicating that inhibiting free radicals is mainly due to this hydrogen. ATV and its metabolites have lower values of Proton Affinity (PA) than ascorbic acid. © 2022 The Author(s) | eng |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131404986&doi=10.1016%2fj.comptc.2022.113758&partnerID=40&md5=9dcd3426e79f66d93431cbf9e2e389ec | |
dc.source | Comput. Theor. Chem. | |
dc.source | Computational and Theoretical Chemistry | eng |
dc.subject | Antioxidant mechanism | eng |
dc.subject | Atorvastatin | eng |
dc.subject | DFT | eng |
dc.subject | Global reactivity descriptors | eng |
dc.title | Theoretical insight into mechanism of antioxidant capacity of atorvastatin and its o-hydroxy and p-hydroxy metabolites, using DFT methods | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1016/j.comptc.2022.113758 | |
dc.relation.citationvolume | 1214 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Duque, L., Laboratorios Ecar S.A. Grupo de Innovación y Desarrollo de Laboratorios Ecar GIdLE, Colombia | |
dc.affiliation | Guerrero, G., Laboratorios Ecar S.A. Grupo de Innovación y Desarrollo de Laboratorios Ecar GIdLE, Colombia | |
dc.affiliation | Colorado, J.H., Laboratorios Ecar S.A. Grupo de Innovación y Desarrollo de Laboratorios Ecar GIdLE, Colombia | |
dc.affiliation | Restrepo, J.A., Facultad de Ciencias Básicas, Grupo de Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Vélez, E., Facultad de Ciencias Básicas, Grupo de Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | (2011), Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Cardiovascular-Diseases-(Cvds), WHO, Cardiovascular diseases (CVDs) | |
dc.relation.references | Khan, M.A., Hashim, M.J., Mustafa, H., Baniyas, M.Y., (2020), S.K.B.M. al Suwaidi, R. AlKatheeri, F.M.K. Alblooshi, M.E.A.H. Almatrooshi, M.E.H. Alzaabi, R.S. al Darmaki, S.N.A.H. Lootah, Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study, Cureus. 12 e9349 | |
dc.relation.references | Roth, G.A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S.F., Abyu, G., Ahmed, M., Malta, C.A., (2017), Castañeda-Orjuela, J. Castillo-Rivas, F. Catalá-López, J.-Y. Choi, H. Christensen, M. Cirillo, L. Cooper, M. Criqui, D. Cundiff, A. Damasceno, L. Dandona, R. Dandona, K. Davletov, S. Dharmaratne, P. Dorairaj, M. Dubey, R. Ehrenkranz, M. el Sayed Zaki, E.J.A. Faraon, A. Esteghamati, T. Farid, M. Farvid, V. Feigin, E.L. Ding, G. Fowkes, T. Gebrehiwot, R. Gillum, A. Gold, P. Gona, R. Gupta, T.D. Habtewold, N. Hafezi-Nejad, T. Hailu, G.B. Hailu, G. Hankey, H.Y. Hassen, K.H. Abate, R. Havmoeller, S.I. Hay, M. Horino, P.J. Hotez, K. Jacobsen, S. James, M. Javanbakht, P. Jeemon, D. John, J. Jonas, Y. Kalkonde, C. Karimkhani, A. Kasaeian, Y. Khader, A. Khan, Y.-H. Khang, S. Khera, A.T. Khoja, J. Khubchandani, D. Kim, D. Kolte, S. Kosen, K.J. Krohn, G.A. Kumar, G.F. Kwan, D.K. Lal, A. Larsson, S. Linn, A. Lopez, P.A. Lotufo, H.M.A. el Razek, R. Malekzadeh, M. Mazidi, T. Meier, K.G. Meles, G. Mensah, A. Meretoja, H. Mezgebe, T. Miller, E. Mirrakhimov, S. Mohammed, A.E. Moran, K.I. Musa, J. Narula, B. Neal, F. Ngalesoni, G. Nguyen, C.M. Obermeyer, M. Owolabi, G. Patton, J. Pedro, D. Qato, M. Qorbani, K. Rahimi, R.K. Rai, S. Rawaf, A. Ribeiro, S. Safiri, J.A. Salomon, I. Santos, M. Santric Milicevic, B. Sartorius, A. Schutte, S. Sepanlou, M.A. Shaikh, M.-J. Shin, M. Shishehbor, H. Shore, D.A.S. Silva, E. Sobngwi, S. Stranges, S. Swaminathan, R. Tabarés-Seisdedos, N. Tadele Atnafu, F. Tesfay, J.S. Thakur, A. Thrift, R. Topor-Madry, T. Truelsen, S. Tyrovolas, K.N. Ukwaja, O. Uthman, T. Vasankari, V. Vlassov, S.E. Vollset, T. Wakayo, D. Watkins, R. Weintraub, A. Werdecker, R. Westerman, C.S. Wiysonge, C. Wolfe, A. Workicho, G. Xu, Y. Yano, P. Yip, N. Yonemoto, M. Younis, C. Yu, T. Vos, M. Naghavi, C. Murray, Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015, J Am Coll Cardiol. 70 1–25 | |
dc.relation.references | Istvan, E.S., Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (2002) Am. Heart J., 144 (6), pp. S27-S32 | |
dc.relation.references | Alenghat, F.J., Davis, A.M., Management of blood cholesterol (2019) JAMA – J. Am. Med. Assoc., 321 (8), p. 800 | |
dc.relation.references | Taylor, F., Huffman, M.D., Macedo, A.F., Moore, T.H., Burke, M., Davey Smith, G., Ward, K., Gay, H.C., Statins for the primary prevention of cardiovascular disease (2017) Cochrane Database Systemat. Rev., 2021 (9) | |
dc.relation.references | Vuppalanchi, R., Chalasani, N., Statins for hyperlipidemia in patients with chronic liver disease: are they safe? (2006) Clin. Gastroenterol. Hepatol., 4 (7), pp. 838-839 | |
dc.relation.references | Rohilla, A., Rohilla, S., Kumar, A., Khan, M.U., Deep, A., Pleiotropic effects of statins: A boulevard to cardioprotection (2016) Arab. J. Chem., 9, pp. S21-S27 | |
dc.relation.references | Liao, J.K., Laufs, U., Pleiotropic effects of statins (2005) Ann. Rev. Pharmacol. Toxicol., 45 (1), pp. 89-118 | |
dc.relation.references | Suzumura, K., Yasuhara, M., Tanaka, K., Odawara, A., Narita, H., Suzuki, T., An in vitro study of the hydroxyl radical scavenging property of fluvastatin, an HMG-CoA reductase inhibitor (1999) Chem. Pharmaceut. Bull., 47 (7), pp. 1010-1012 | |
dc.relation.references | Chen, M.F., Hsu, H.C., Lee, Y.T., Short-term treatment with low-dose pravastatin attenuates oxidative susceptibility of low-density lipoprotein in hypercholesterolemic patients (1997) Cardiovascular Drugs Therapy., 11 | |
dc.relation.references | Girona, J., La Ville, A.E., Solà, R., Plana, N., Masana, L., Simvastatin decreases aldehyde production derived from lipoprotein oxidation (1999) Am. J. Cardiol., 83 (6), pp. 846-851 | |
dc.relation.references | Hussein, O., Schlezinger, S., Rosenblat, M., Keidar, S., Aviram, M., Reduced susceptibility of low density lipoprotein (LDL) to lipid peroxidation after fluvastatin therapy is associated with the hypocholesterolemic effect of the drug and its binding to the LDL (1997) Atherosclerosis, 128 (1), pp. 11-18 | |
dc.relation.references | Aviram, M., Dankner, G., Cogan, U., Hochgraf, E., Brook, J.G., Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies (1992) Metabolism, 41 (3), pp. 229-235 | |
dc.relation.references | Hoffman, R., Brook, G.J., Aviram, M., Hypolipidemic drugs reduce lipoprotein susceptibility to undergo lipid peroxidation: in vitro and ex vivo studies (1992) Atherosclerosis, 93 (1-2), pp. 105-113 | |
dc.relation.references | Franzoni, F., Quiñones-Galvan, A., Regoli, F., Ferrannini, E., Galetta, F., A comparative study of the in vitro antioxidant activity of statins (2003) Int. J. Cardiol., 90 (2-3), pp. 317-321 | |
dc.relation.references | Athyros, V.G., Tziomalos, K., Karagiannis, A., Mikhailidis, D.P., Atorvastatin: safety and tolerability (2010) Exp. Opin. Drug Saf., 9 (4), pp. 667-674 | |
dc.relation.references | Mira, R., Tony, H., Khetam, H., Aviram, M., Atorvastatin therapy increases monocyte / macrophage paraoxonase 2 expression and reduces oxidative stress in hyprecholesterolemic patients (2005) Lett. Drug Des. Discov., 1 | |
dc.relation.references | Ky, B., Burke, A., Tsimikas, S., Wolfe, M.L., Tadesse, M.G., Szapary, P.O., Witztum, J.L., Rader, D.J., The influence of pravastatin and atorvastatin on markers of oxidative stress in hypercholesterolemic humans (2008) J Am Coll Cardiol., 51 (17), pp. 1653-1662 | |
dc.relation.references | Perticone, F., Ceravolo, R., Maio, R., Cloro, C., Candigliota, M., Scozzafava, A., Mongiardo, A., Chello, M., Effects of atorvastatin and vitamin C on endothelial function of hypercholesterolemic patients (2000) Atherosclerosis., 152 (2), pp. 511-518 | |
dc.relation.references | Matafome, P., Monteiro, P., Nunes, E., Louro, T., Amaral, C., Moedas, A., Goncalves, L., Seica, R., Therapeutic association of atorvastatin and insulin in cardiac ischemia: study in a model of type 2 diabetes with hyperlipidemia (2008) Pharmacol. Res., 58 (3-4), pp. 208-214 | |
dc.relation.references | Bolayirli, I.M., Aslan, M., Balci, H., Altug, T., Hacibekiroglu, M., Seven, A., Effects of atorvastatin therapy on hypercholesterolemic rabbits with respect to oxidative stress, nitric oxide pathway and homocysteine (2007) Life Sci., 81 (2), pp. 121-127 | |
dc.relation.references | Roth, B.D., The discovery and development of atorvastatin, a potent novel hypolipidemic agent (2002) Progr. Med. Chem., 40 | |
dc.relation.references | Istvan, E.S., Deisenhofer, J., Structural mechanism for statin inhibition of HMG-CoA reductase (2001) Science, 292 (5519), pp. 1160-1164 | |
dc.relation.references | Alnajjar, R., Mohamed, N., Kawafi, N., Bicyclo[1.1.1]Pentane as Phenyl substituent in atorvastatin drug to improve physicochemical properties: drug-likeness, DFT, pharmacokinetics, docking, and molecular dynamic simulation (2021) J. Mol. Struct., 1230, p. 129628 | |
dc.relation.references | Hoffmann, M., Nowosielski, M., DFT study on hydroxy acid–lactone interconversion of statins: the case of atorvastatin (2008) Org. Biomol. Chem., 6 (19), p. 3527 | |
dc.relation.references | Aviram, M., Rosenblat, M., Bisgaier, C.L., Newton, R.S., Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation (1998) Atherosclerosis., 138 (2), pp. 271-280 | |
dc.relation.references | Palem, C.R., Patel, S., Pokharkar, V.B., Solubility and stability enhancement of atorvastatin by cyclodextrin complexation (2009) PDA J. Pharm. Sci. Technol., 63, pp. 217-225 | |
dc.relation.references | Khan, F.N., Dehghan, M.H.G., Enhanced bioavailability of atorvastatin calcium from stabilized gastric resident formulation (2011) AAPS PharmSciTech., 12 (4), pp. 1077-1086 | |
dc.relation.references | Rodde, M.S., Divase, G.T., Devkar, T.B., Tekade, A.R., Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: In vitro, ex vivo, and in vivo studies (2014) BioMed Res. Int., 2014, pp. 1-10 | |
dc.relation.references | Portes, E., Gardrat, C., Castellan, A., A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids (2007) Tetrahedron., 63 (37), pp. 9092-9099 | |
dc.relation.references | Ingold, K.U., Pratt, D.A., Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective (2014) Chem. Rev., 114 (18), pp. 9022-9046 | |
dc.relation.references | Galano, A., Raúl Alvarez-Idaboy, J., Computational strategies for predicting free radical scavengers’ protection against oxidative stress: where are we and what might follow? (2019) Int. J. Quantum Chem., 119 (2), p. e25665 | |
dc.relation.references | Huang, P., Jin, L.-X., Lu, J.-F., Gao, Y.-H., Guo, S.-B., A theoretical study of radical scavenging antioxidant activity of 3-styrylchromone derivatives using DFT based on quantum chemical descriptors (2021) Theoret. Chem. Accounts., 140 (5) | |
dc.relation.references | Klein, E., Lukeš, V., Ilčin, M., DFT/B3LYP study of tocopherols and chromans antioxidant action energetics (2007) Chem. Phys., 336 (1), pp. 51-57 | |
dc.relation.references | Parr, R.G., Weitao, Y., (1995) Density-Functional Theory of Atoms and MoleculesDensity-Functional Theory of Atoms and Molecules, , Oxford University Press | |
dc.relation.references | Parr, R.G., Szentpály, L.V., Liu, S., Electrophilicity index (1999) J. Am. Chem. Soc., 121 (9), pp. 1922-1924 | |
dc.relation.references | Zanjanchi, F., Beheshtian, J., Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study (2019) J. Iran. Chem. Soc., 16 (4), pp. 795-805 | |
dc.relation.references | Rajan, V.K., Hasna, C.K., Muraleedharan, K., The natural food colorant Peonidin from cranberries as a potential radical scavenger – A DFT based mechanistic analysis (2018) Food Chem., 262, pp. 184-190 | |
dc.relation.references | Gupta, V.P., Characterization of Chemical Reactions, Principles and Applications of Quantum (2016) Principles and Applications of Quantum Chemistry, pp. 385-433. , Elsevier | |
dc.relation.references | Bâldea, I., A quantum chemical study from a molecular transport perspective: Ionization and electron attachment energies for species often used to fabricate single-molecule junctions (2014) Faraday Discussions., 174 | |
dc.relation.references | Gázquez, J.L., Cedillo, A., Vela, A., Electrodonating and electroaccepting powers (2007) J. Phys. Chem. A., 111 (10), pp. 1966-1970 | |
dc.relation.references | Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Foresman, J.B., (2013), J. v. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 | |
dc.relation.references | Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98 (7), pp. 5648-5652 | |
dc.relation.references | Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B., 37 (2), pp. 785-789 | |
dc.relation.references | La Rocca, M.V., Rutkowski, M., Ringeissen, S., Gomar, J., Frantz, M.-C., Ngom, S., Adamo, C., Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies (2016) J. Mol. Model., 22 (10) | |
dc.relation.references | Cancès, E., Mennucci, B., Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to Isotropic and anisotropic dielectrics (1997) J. Chem. Phys., 107 (8), pp. 3032-3041 | |
dc.relation.references | Zhan, C.-G., Nichols, J.A., Dixon, D.A., Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies (2003) J. Phys. Chem. A., 107, pp. 4184-4195 | |
dc.relation.references | Domingo, L.R., Aurell, M.J., Pérez, P., Contreras, R., Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions (2002) Tetrahedron., 58 (22), pp. 4417-4423 | |
dc.relation.references | Gázquez, J.L., (2008), http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2008000100002&lng=es&nrm=iso&tlng=en, Perspectives on the Density Functional Theory of Chemical Reactivity, J Mex Chem Soc. 52 3–10. (accessed May 5, 2022) | |
dc.relation.references | Xue, Y., Zheng, Y., An, L., Dou, Y., Liu, Y., Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins (2014) Food Chem., 151, pp. 198-206 | |
dc.relation.references | Benzie, I.F.F., Strain, J.J., (1999), pp. 15-27. , [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration, in | |
dc.relation.references | Badarinath, A.V., Mallikarjuna, K., (2010), pp. 1276-1285. , RAo, C. Madhu Sudhana Chetty, S. Ramkanth, T.V.S. Rajan, K. Gnanaprakash, A Review on In-vitro Antioxidant Methods: Comparisions, Correlations and Considerations, International Journal of PharmTech Research. 2 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |