Mostrar el registro sencillo del ítem

dc.contributor.authorLópez-Bermeo C
dc.contributor.authorMontoya R.D
dc.contributor.authorCaro-Lopera F.J
dc.contributor.authorDíaz-García J.A.
dc.date.accessioned2023-10-24T19:26:37Z
dc.date.available2023-10-24T19:26:37Z
dc.date.created2022
dc.identifier.issn14747065
dc.identifier.urihttp://hdl.handle.net/11407/8154
dc.description.abstractThis study aims to validate the accuracy of the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) dataset at representing climate variability over various time scales. The study is carried out in Antioquia, in northwestern Colombia, and uses statistically independent information provided by 75 rain gauges located at different sites from 1981 to 2018. In this study, statistical metrics are used to analyze the error structure of the CHIRPS data. Resilient methods for validation are included based on Gauss-Markov diagnostic problems and influence points, leverage, and outliers in the form of the trimmed least squares boot method and principal component analysis. To represent the performance of CHIRPS more accurately at estimating precipitation at different time scales, a comparison is made using 12 specific rain gauge located in different subregions of Antioquia, which had well-differentiated climatic characteristics. The results show that the accuracy of CHIRPS estimates is conditioned by geographic and climatic characteristics of the region in which precipitation events occur. CHIRPS works well in most weather conditions in Antioquia, even during the most intense periods of ENSO. However, it does better in the Andean subregions and underperforms in warmer regions. This study finds that CHIRPS is a rainfall data source that can be considered for analyzing seasonal and interannual variability and spatial precipitation patterns. It provides good spatio-temporal coverage and is particularly suitable for areas with few rainfall gauges. However, its accuracy is minimal for daily analysis. © 2022 The Authorseng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133912539&doi=10.1016%2fj.pce.2022.103184&partnerID=40&md5=95bca8e4f50b45fc7b1664d8131e1cf4
dc.sourcePhys. Chem. Earth
dc.sourcePhysics and Chemistry of the Eartheng
dc.subjectCHIRPSeng
dc.subjectClimate variabilityeng
dc.subjectRain gaugeeng
dc.subjectSatellite-based precipitationeng
dc.subjectSpatiotemporal validationeng
dc.subjectTropical Andeseng
dc.titleValidation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South Americaeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civilspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.pce.2022.103184
dc.relation.citationvolume127
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationLópez-Bermeo, C., Grupo de Investigación en Modelación Hídrica y Calidad del Agua-GICAMH, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 30-65, Medellín, Colombia
dc.affiliationMontoya, R.D., Grupo de Investigación en Modelación Hídrica y Calidad del Agua-GICAMH, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 30-65, Medellín, Colombia
dc.affiliationCaro-Lopera, F.J., Grupo de Investigación en Materiales Nanoestructurados y Biomodelación, Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 30-65, Medellín, Colombia
dc.affiliationDíaz-García, J.A., Grupo de Investigación en Teoría de Formas, Bravais-Moiré y Matrices Aleatorias, Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 30-65, Medellín, Colombia
dc.relation.referencesAli, M.H., Abustan, I., A new novel index for evaluating model performance (2014) J. Nat. Resour. Dev., pp. 1-9
dc.relation.referencesÁlvarez-Villa, O.D., Vélez, J.I., Poveda, G., Improved long-term mean annual rainfall fields for Colombia (2011) Int. J. Climatol., 31, pp. 2194-2212
dc.relation.referencesBabaousmail, H., Hou, R., Ayugi, B., Tchalim, G., Journal of atmospheric and solar-terrestrial physics evaluation of satellite-based precipitation estimates over Algeria during 1998 – 2016 (2019) J. Atmos. Sol. Terr. Phys., 195
dc.relation.referencesBaez-Villanueva, O.M., Zambrano-bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-osorio, J.D., Xuan, N., Thinh, N.X., Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America (2018) Atmos. Res., 213, pp. 34-50
dc.relation.referencesBai, L., Shi, C., Li, L., Yang, Y., Wu, J., Accuracy of CHIRPS satellite-rainfall products over Mainland China (2018) Rem. Sens., 10, p. 362
dc.relation.referencesBarbosa, R., Cavalcante, L., Batista, D., Rógenes, P., Pontes, M., Gonçalves, R., Priscila, C., Souza, D., Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia (2020) Atmos. Res., 238
dc.relation.referencesBedoya-Soto, J.M., Poveda, G., Sauchyn, D., New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales (2018) Water (Switzerland), 10, pp. 14-17
dc.relation.referencesCharlier, J.B., Ladouche, B., Maréchal, J.C., Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis (2015) J. Hydrol., 523, pp. 610-623
dc.relation.referencesDinku, T., Ruiz, F., Connor, S.J., Ceccato, P., Validation and intercomparison of satellite rainfall estimates over Colombia (2010) J. Appl. Meteorol. Climatol., 49, pp. 1004-1014
dc.relation.referencesFunk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Michaelsen, J., The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes (2015) Sci. Data, 2, pp. 1-21
dc.relation.referencesFunk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., Husak, G., A global satellite-assisted precipitation climatology (2015) Earth Syst. Sci. Data, 7, pp. 275-287
dc.relation.referencesGao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., Cai, W., Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China (2018) Atmos. Res., 212, pp. 150-157
dc.relation.referencesEstudio Nacional del Agua 2014 (2014), Estudio Nacional del Agua 2014
dc.relation.referencesJaramillo, L., Poveda, G., Mejía, J.F., Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM (2017) Int. J. Climatol., 37, pp. 380-397
dc.relation.referencesKatsanos, D., Retalis, A., Michaelides, S., Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period (2016) Atmos. Res., 169, pp. 459-464
dc.relation.referencesKatsanos, D., Retalis, A., Tymvios, F., Michaelides, S., Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus (2016) Nat. Hazards, 83, pp. 53-63
dc.relation.referencesLiu, J., Shangguan, D., Liu, S., Ding, Y., Wang, S., Wang, X., Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981 – 2015 (2019) Atmos. Res., 230
dc.relation.referencesMacharia, J.M., Ngetich, F.K., Shisanya, C.A., Agricultural and Forest Meteorology Comparison of satellite remote sensing derived precipitation estimates and observed data in Kenya (2020) Agric. For. Meteorol., 284
dc.relation.referencesMao, X., Cui, L., Wang, C., Exploring the hydrologic relationships in a swamp-dominated watershed — a network-environ-analysis based approach (2013) Ecol. Model., 252, pp. 273-279
dc.relation.referencesMapes, B.E., Warner, T.T., Xu, M., Negri, A.J., Diurnal patterns of rainfall in northwestern south America. Part I : observations and context (2003) Mon. Weather Rev., 131, pp. 799-812
dc.relation.referencesNazari-sharabian, M., Relationship between sunspot numbers and mean annual precipitation: application of cross-wavelet Transform — A Case Study (2020) J. Multidiscip. Sci. Res., 2000, pp. 67-78
dc.relation.referencesOjeda, B., Orlando, E., Arias, R., Informe nacional sobre la gestión del agua en Colombia, Agua para el Siglo XXI para América del Sur, De la Visión a la Acción (2000)
dc.relation.referencesPalharini, R.S.A., Vila, D.A., Rodrigues, D.T., Palharini, R.C., Mattos, E.V., Pedra, G.U., Assessment of extreme rainfall estimates from satellite-based: regional analysis (2021) Remote Sens. Appl. Soc. Environ., 23
dc.relation.referencesPalharini, R.S.A., Vila, D.A., Rodrigues, D.T., Quispe, D.P., Palharini, R.C., de Siqueira, R.A., de Sousa Afonso, J.M., Assessment of the extreme precipitation by satellite estimates over South America (2020) Rem. Sens., 12, pp. 1-23
dc.relation.referencesPalomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmos. Res., 217, pp. 37-48
dc.relation.referencesParedes-Trejo, F.J., Barbosa, H.A., Kumar, T.V.L., Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil (2017) J. Arid Environ., 139, pp. 26-40
dc.relation.referencesPearson, K., Notes on the history of correlation (1920) Biometrika, 13, pp. 25-45
dc.relation.referencesPeng, F., Zhao, S., Chen, C., Cong, D., Wang, Y., Evaluation and comparison of the precipitation detection ability of multiple satellite products in a typical agriculture area of China (2020) Atmos. Res., 236
dc.relation.referencesPoveda, G., Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes (2011) Adv. Water Resour., 34, pp. 243-256
dc.relation.referencesPoveda, G., Álvarez, D.M., Rueda, Ó.A., Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots (2011) Clim. Dynam., 36, pp. 2233-2249
dc.relation.referencesPoveda, G., Jaramillo, L., Vallejo, L.F., Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers (2014) Water Resour. Res., 50, pp. 98-118
dc.relation.referencesPoveda, G., Salazar, L.F., Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia (2004) Remote Sens. Environ., 93, pp. 391-401
dc.relation.referencesPoveda, G., Vélez, J.I., Mesa, O.J., Cuartas, A., Barco, J., Mantilla, R.I., Mejía, J.F., Quevedo, D.I., Linking long-term water balances and statistical scaling to estimate river flows along the drainage network of Colombia (2006) J. Hydrol. Eng., 12, pp. 4-13
dc.relation.referencesPoveda, G., Waylen, P.R., Pulwarty, R.S., Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica (2006) Palaeogeogr. Palaeoclimatol. Palaeoecol., 234, pp. 3-27
dc.relation.referencesPoveda Jaramillo, G., Poveda, G., El Clima de Antioquia (2006) Geografía de Antioquia, pp. 117-128. , M. Hermelin Fondo Editorial Univ. Eafit
dc.relation.referencesRashid, M.M.M., Beecham, S., Kabir, R., Chowdhury, R.K., Assessment of trends in point rainfall using Continuous Wavelet Transforms (2015) Adv. Water Resour., 82, pp. 1-15
dc.relation.referencesRivera, J.A., Hinrichs, S., Marianetti, G., Using CHIRPS dataset to assess wet and dry conditions along the semiarid central-western Argentina (2019) Adv. Meteorol., 18. , 2019
dc.relation.referencesRivera, J.A., Marianetti, G., Hinrichs, S., Validation of CHIRPS precipitation dataset along the central Andes of Argentina (2018) Atmos. Res., 213, pp. 437-449
dc.relation.referencesSatgé, F., Bonnet, M.P., Gosset, M., Molina, J., Hernan Yuque Lima, W., Pillco Zolá, R., Timouk, F., Garnier, J., Assessment of satellite rainfall products over the Andean plateau (2016) Atmos. Res., 167, pp. 1-14
dc.relation.referencesSatgé, F., Ruelland, D., Bonnet, M.P., Molina, J., Pillco, R., Hydrosciences, U.M.R., Bataillon, P.E., Cedex, M., Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region (2019) Hydrol. Earth Syst. Sci., 23, pp. 595-619
dc.relation.referencesShrestha, N.K., Qamer, F.M., Pedreros, D., Murthy, M.S.R.R., Wahid, S.M., Shrestha, M., Evaluating the accuracy of Climate Hazard Group (CHG) satellite rainfall estimates for precipitation based drought monitoring in Koshi basin, Nepal (2017) J. Hydrol. Reg. Stud., 13, pp. 138-151
dc.relation.referencesSun, L., Baker, J.C.A., Gloor, E., Spracklen, D., Boesch, H., Somkuti, P., Maeda, E., Buermann, W., Seasonal and inter-annual variation of evapotranspiration in Amazonia based on precipitation, river discharge and gravity anomaly data (2019), 7, 1-9
dc.relation.referencesSzolgayova, E., Parajka, J., Blöschl, G., Bucher, C., Long term variability of the Danube River flow and its relation to precipitation and air temperature (2014) J. Hydrol., 519, pp. 871-880
dc.relation.referencesTamaddun, K.A., Kalra, A., Ahmad, S., Wavelet analysis of western U.S. streamflow with ENSO and PDO (2017) J. Water Clim. Chang., 8, pp. 1-14
dc.relation.referencesTorrence, C., Compo, G.P., A practical guide to wavelet analysis (1998) Bull. Am. Meteorol. Soc., 79, pp. 61-78
dc.relation.referencesToté, C., Patricio, D., Boogaard, H., van der Wijngaart, R., Tarnavsky, E., Funk, C., Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique (2015) Rem. Sens., 7, pp. 1758-1776
dc.relation.referencesUrrea, V., Ochoa, A., Mesa, O., Seasonality of rainfall in Colombia (2019) Water Resour. Res., 55, pp. 4149-4162
dc.relation.referencesWang, H., Zhang, M., Zhu, H., Dang, X., Yang, Z., Yin, L., Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang River Basin, NW China (2012) Catena, 95, pp. 33-41
dc.relation.referencesWillmott, C.J., Some comments on the evaluation of model performance (1982) Bull. Am. Meteorol. Soc., 63, pp. 1309-1313
dc.relation.referencesWu, W., Li, Y., Luo, X., Zhang, Y., Ji, X., Li, X., Performance evaluation of the CHIRPS precipitation dataset and its utility in drought monitoring over Yunnan Province, China (2019) Geomatics, Nat. Hazards Risk, 10, pp. 2145-2162
dc.relation.referencesZambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M., Lagos, O., Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile (2017) Atmos. Res., 186, pp. 26-42
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem