Mostrar el registro sencillo del ítem

dc.contributor.authorLopera A
dc.contributor.authorRestrepo J
dc.contributor.authorVélez E.
dc.date.accessioned2024-07-31T21:06:51Z
dc.date.available2024-07-31T21:06:51Z
dc.date.created2024
dc.identifier.issn25130390
dc.identifier.urihttp://hdl.handle.net/11407/8410
dc.descriptionBetanin (Bn), a natural dye in the Betalains family, predominantly takes on a cationic form known as Bn+. However, it exists in a neutral state as Bn_C2, Bn_C15, and Bn_C17 by losing an H+ from one of its carboxylic acids. Density functional theory (DFT) and Time-dependent density functional theory (TD-DFT) studies evaluate the efficiency of each betanin form and pinpoint the most probable anchoring point to TiO2. The Bn_C17 variant stands out as a highly promising candidate for DSSC cells, demonstrating a distinctive combination of electron injection efficiency, electrochemical performance, hole transport capabilities, and photovoltaic behavior. Considering factors like adsorption energy, binding mode, structural compatibility, electronic properties, and absorption characteristics, Bn_C17@TiO2 emerges as the most favorable dye@TiO2 complex among the studied betanin forms for DSSC applications. Contrastingly, the C2-COOH anchoring point presents challenges with monodentate binding, a different orientation, and potential load distribution issues. This behavior, resembling that of a p-type dye, differs from the n-type behavior exhibited by the C15-COOH and C17-COOH forms, making the latter two more suitable as sensitizers. Consequently, C2-COOH may not be the optimal anchoring point for TiO2 in the investigated betanin forms, especially when compared to the more favorable C17-COOH anchoring point. © 2024 Wiley-VCH GmbH.
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85194568314&doi=10.1002%2fadts.202400145&partnerID=40&md5=ad83ae5ea8ecde3aa237143d40b2cb44
dc.sourceAdvanced Theory and Simulations
dc.sourceAdv. Theory Simul.
dc.sourceScopus
dc.subjectAnchoring groupeng
dc.subjectBetanineng
dc.subjectDFTeng
dc.subjectDSSC cellseng
dc.subjectDye@TiO2eng
dc.subjectTD-DFTeng
dc.subjectBinding energyeng
dc.subjectComputation theoryeng
dc.subjectDyeseng
dc.subjectElectronic propertieseng
dc.subjectPhotovoltaic effectseng
dc.subjectTitanium dioxideeng
dc.subjectAnchoring groupseng
dc.subjectAnchoringseng
dc.subjectBetalainseng
dc.subjectBetanineng
dc.subjectCationic formseng
dc.subjectDensity-functional-theoryeng
dc.subjectDye@TiO2eng
dc.subjectNatural dyeeng
dc.subjectNeutral stateeng
dc.subjectTime dependent density functional theoryeng
dc.subjectDensity functional theoryeng
dc.titleComputational Insights Into Betanin for Dsscs: Unraveling Deprotonation Variations and Identifying Optimal Anchoring Sites on TiO2eng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1002/adts.202400145
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationLopera, A., Grupo de Materiales Nanoestructurados y Biomodelación MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30–65, Medellín, 050026, Colombia
dc.affiliationRestrepo, J., Grupo de Materiales Nanoestructurados y Biomodelación MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30–65, Medellín, 050026, Colombia
dc.affiliationVélez, E., Grupo de Materiales Nanoestructurados y Biomodelación MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30–65, Medellín, 050026, Colombia
dc.relation.referencesLi, C., Wang, F., Yu, J.C., (2011) Energy Environ. Sci., 4, p. 100
dc.relation.referencesIqbal, M.Z., Ali, S.R., Khan, S., (2019) Sol. Energy, 181, p. 490
dc.relation.referencesZhu, X.-G., Long, S.P., Ort, D.R., (2008) Curr. Opin. Biotechnol., 19, p. 153
dc.relation.referencesPetrova-Koch, V., Hezel, R., Goetzberger, A., (2020) High-Efficient Low-Cost Photovoltaics, , Eds.,, Springer International Publishing, Cham
dc.relation.referencesO'Regan, B., Grätzel, M., (1991) Nature, 353, p. 737
dc.relation.referencesBłaszczyk, A., Joachimiak-Lechman, K., Sady, S., Tański, T., Szindler, M., Drygała, A., (2021) Sol. Energy, 215, p. 346
dc.relation.referencesKacimi, R., Abram, T., Bejjit, L., Bouachrine, M., (2018) J. Turk. Chem. Soc., Sect. A, 5, p. 1009
dc.relation.referencesDelgado-Vargas, F., Jiménez, A.R., Paredes-López, O., (2000) Crit. Rev. Food Sci. Nutr., 40, p. 173
dc.relation.referencesMérillon, J.-M., Ramawat, K.G., (2020) Bioactive Molecules in Food, , Eds.,, Springer International Publishing, Cham
dc.relation.referencesRahimi, P., Abedimanesh, S., Mesbah-Namin, S.A., Ostadrahimi, A., (2019) Crit. Rev. Food Sci. Nutr., 59, p. 2949
dc.relation.referencesKnorr, F.J., McHale, J.L., Clark, A.E., Marchioro, A., Moser, J.-E., (2015) J. Phys. Chem. C, 119
dc.relation.referencesRamirez-Velasquez, I.M., Velez, E., Bedoya-Calle, A., Caro-Lopera, F.J., (2022) Molecules, 27, p. 2003
dc.relation.references(2015) EFSA J, 13. , https://doi.org/10.2903/j.efsa.2015.4318
dc.relation.referencesIsah, K.U., Ahmadu, U., Idris, A., Kimpa, M.I., Uno, U.E., Ndamitso, M.M., Alu, N., (2015) Mater Renew Sustain Energy, 4. , https://doi.org/10.1007/s40243-014-0039-0
dc.relation.referencesRamamoorthy, R., Radha, N., Maheswari, G., Anandan, S., Manoharan, S., Victor Williams, R., (2016) J. Appl. Electrochem., 46, p. 929
dc.relation.referencesOprea, C.I., Dumbravă, A., Enache, I., Georgescu, A., Gîrţu, M.A., (2012) J Photochem Photobiol A Chem, 240, p. 5
dc.relation.referencesWendel, M., Kumorkiewicz, A., Wybraniec, S., Ziółek, M., Burdziński, G., (2017) Dyes Pigm., 141, p. 306
dc.relation.referencesCalogero, G., Yum, J.-H., Sinopoli, A., Di Marco, G., Grätzel, M., Nazeeruddin, M.K., (2012) Sol. Energy, 86, p. 1563
dc.relation.referencesZhang, D., Yoshida, T., Minoura, H., (2002) Natural Dye Sensitized Solar Cells
dc.relation.referencesSandquist, C., McHale, J.L., (2011) J Photochem Photobiol A Chem, 221, p. 90
dc.relation.referencesCiriminna, R., Timpanaro, G., Ilharco, L.M., Danzì, C., Fidalgo, A., Pagliaro, M., Pagliaro, M., (2017)
dc.relation.referencesBelhadj Slimen, I., Najar, T., Abderrabba, M., (2017) J. Agric. Food Chem., 65, p. 675
dc.relation.referencesRodriguez, S.A., Baumgartner, M.T., (2020) ACS Omega, 5
dc.relation.referencesda Silva, D.V.T., de O Silva, F., Perrone, D., Pierucci, A.P.T.R., Conte-Junior, C.A., da S Alvares, T., Del Aguila, E.M., Paschoalin, V.M.F., (2016) Food Nutr Res, 60
dc.relation.referencesPérez-Ramírez, E., Lima, E., Guzmán, A., (2015) Dyes Pigm., 120, p. 161
dc.relation.referencesKhan, M.I., (2016) Food Chem., 197, p. 1280
dc.relation.referencesAmjadi, S., Ghorbani, M., Hamishehkar, H., Roufegarinejad, L., (2018) Food Chem., 256, p. 156
dc.relation.referencesGliszczyńska-Świgło, A., Szymusiak, H., Malinowska, P., (2006) Food Addit Contam, 23, p. 1079
dc.relation.referencesKhan, M.I., Giridhar, P., (2015) Phytochemistry, 117, p. 267
dc.relation.referencesKumorkiewicz-Jamro, A., Świergosz, T., Sutor, K., Spórna-Kucab, A., Wybraniec, S., (2021) Nat. Prod. Rep., 38, p. 2315
dc.relation.referencesSkopińska, A., Tuwalska, D., Wybraniec, S., Starzak, K., (2012) Challenges of Modern Technology4, 3, p. 34
dc.relation.referencesda Silva, D.V.T., dos S Baião, D., Ferreira, V.F., Paschoalin, V.M.F., (2022) Crit. Rev. Food Sci. Nutr., 62, p. 539
dc.relation.referencesZhang, D., Lanier, S.M., Downing, J.A., Avent, J.L., Lum, J., McHale, J.L., (2008) J Photochem Photobiol A Chem, 195, p. 72
dc.relation.referencesQin, C., Clark, A.E., (2007) Chem. Phys. Lett., 438, p. 26
dc.relation.referencesCalogero, G., Di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., Di Carlo, A., Bignozzi, C.A., (2010) Int. J. Mol. Sci., 11, p. 254
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Montgomery, J.A., (2013)
dc.relation.referencesBecke, A.D., (1993) J. Chem. Phys., 98, p. 5648
dc.relation.referencesLee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785
dc.relation.referencesYanai, T., Tew, D.P., Handy, N.C., (2004) Chem. Phys. Lett., 393, p. 51
dc.relation.referencesSamanta, P.N., Majumdar, D., Roszak, S., Leszczynski, J., (2020) J. Phys. Chem. C, 124, p. 2817
dc.relation.referencesSingh, M., Kanaparthi, R.K., (2022) Sol. Energy, 237, p. 456
dc.relation.referencesLi, Y., Li, X., Xu, Y., (2020) Sol. Energy, 196, p. 146
dc.relation.referencesHe, L.-J., Sun, Y., Li, W., Wang, J., Song, M.-X., Zhang, H.-X., (2018) Sol. Energy, 173, p. 283
dc.relation.referencesFahim, Z.M.E., Bouzzine, S.M., Youssef, A.A., Bouachrine, M., Hamidi, M., (2018) Comput. Theor. Chem., 1125, p. 39
dc.relation.referencesLi, Y., Liu, J., Liu, D., Li, X., Xu, Y., (2019) Comput. Mater. Sci., 161, p. 163
dc.relation.referencesCancès, E., Mennucci, B., Tomasi, J., (1997) J. Chem. Phys., 107
dc.relation.referencesKoopmans, T., (1934) Physica, 1, p. 104
dc.relation.referencesZevallos, J., Toro-Labbé, A., (2003) J. Chil. Chem. Soc., 48, p. 3032
dc.relation.referencesJanak, J.F., (1978) Phys. Rev. B, 18, p. 7165
dc.relation.referencesPal, R., Chattaraj, P.K., (2021) J. Indian Chem. Soc., 98
dc.relation.referencesEstrella, L.L., Kim, D.H., (2019) Sol. Energy, 188, p. 1031
dc.relation.referencesMao, L., Dun, S., Ren, H., Jiang, J., Guo, X., Huang, F., Heng, P., Ågren, H., (2021) J Mater Chem C Mater, 9, p. 5800
dc.relation.referencesMa, W., Jiao, Y., Meng, S., (2014) J. Phys. Chem. C, 118
dc.relation.referencesZhang, J., Kan, Y.H., Bin Li, H., Geng, Y., Wu, Y., Su, Z.M., (2012) Dyes Pigm., 95, p. 313
dc.relation.referencesBoschloo, G., Hagfeldt, A., (2009) Acc. Chem. Res., 42, p. 1819
dc.relation.referencesZhang, C.-R., Liu, L., Zhe, J.-W., Jin, N.-Z., Ma, Y., Yuan, L.-H., Zhang, M.-L., Chen, H.-S., (2013) Int. J. Mol. Sci., 14, p. 5461
dc.relation.referencesManzoor, T., Pandith, A.H., (2019) J. Comput. Chem., 40, p. 2444
dc.relation.referencesPreat, J., Jacquemin, D., Michaux, C., Perpète, E.A., (2010) Chem. Phys., 376, p. 56
dc.relation.referencesFan, W., Tan, D., Deng, W.-Q., (2012) ChemPhysChem, 13, p. 2051
dc.relation.referencesNazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N., Graetzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382
dc.relation.referencesVuai, S.A.H., Khalfan, M.S., Babu, N.S., (2021) Heliyon, 7
dc.relation.referencesManzoor, T., Niaz, S., Pandith, A.H., (2019) Int. J. Quantum Chem., 119. , https://doi.org/10.1002/qua.25979
dc.relation.referencesManzoor, T., Asmi, S., Niaz, S., Hussain Pandith, A., (2017) Int. J. Quantum Chem., 117
dc.relation.referencesManzoor, T., Pandith, A.H., (2018) ChemistrySelect, 3, p. 2376
dc.relation.referencesMohr, T., Aroulmoji, V., Ravindran, R.S., Müller, M., Ranjitha, S., Rajarajan, G., Anbarasan, P.M., (2015) Spectrochim Acta A Mol Biomol Spectrosc, 135, p. 1066
dc.relation.referencesWu, Z., Fan, B., Xue, F., Adachi, C., Ouyang, J., (2010) Sol. Energy Mater. Sol. Cells, 94, p. 2230
dc.relation.referencesPreat, J., Michaux, C., Jacquemin, D., Perpète, E.A., (2009) J. Phys. Chem. C, 113
dc.relation.referencesPandith, A.H., Islam, N., (2014) PLoS One, 9
dc.relation.referencesTripathi, A., Chetti, P., (2019) J Chin Chem Soc, 66, p. 891
dc.relation.referencesTripathi, A., Prabhakar, C., (2020) J. Mol. Struct., 1203
dc.relation.referencesDaeneke, T., Mozer, A.J., Uemura, Y., Makuta, S., Fekete, M., Tachibana, Y., Koumura, N., Spiccia, L., (2012) J. Am. Chem. Soc., 134
dc.relation.referencesChaitanya, K., Ju, X.H., Heron, B.M., (2014) RSC Adv., 4
dc.relation.referencesChen, H., Gong, Y., Vázquez-Mayagoitia, Á., Zhang, J., Cole, J.M., (2020) ACS Appl. Energy Mater., 3, p. 423
dc.relation.referencesSánchez-de-Armas, R., San Miguel, M.Á., Oviedo, J., Fdez Sanz, J., (2012) Phys. Chem. Chem. Phys., 14, p. 225
dc.relation.referencesFadili, D., Bouzzine, S.M., Hamidi, M., (2021) New J. Chem., 45, p. 2723
dc.relation.referencesSánchez-de-Armas, R., Oviedo, J., San Miguel, M.Á., Fdez Sanz, J., (2011) J. Phys. Chem. C, 115
dc.relation.referencesHehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257
dc.relation.referencesLiu, Y., Zhang, X., Li, C., Tian, Y., Zhang, F., Wang, Y., Wu, W., Liu, B., (2019) J. Phys. Chem. C, 123
dc.relation.referencesNamuangruk, S., Jungsuttiwong, S., Kungwan, N., Promarak, V., Sudyoadsuk, T., Jansang, B., Ehara, M., (2016) Theor. Chem. Acc., 135, p. 14
dc.relation.referencesBiswas, A.K., Das, A., Ganguly, B., (2015) Phys. Chem. Chem. Phys., 17
dc.relation.referencesLopera, A., Vélez, E., Restrepo, J., Polo, V., (2024) Comput. Theor. Chem., 1232
dc.relation.referencesVelkov, Z., Traykov, M., Trenchev, I., Saso, L., Tadjer, A., (2019) J. Phys. Chem. A, 123, p. 5106
dc.relation.referencesKlein, E., Lukeš, V., Ilčin, M., (2007) Chem. Phys., 336, p. 51
dc.relation.referencesSingh, M., Nadendla, S., Kanaparthi, R.K., (2023) J Photochem Photobiol A Chem, 435
dc.relation.referencesBecker, H.G.O., (1978) Journal für Praktische Chemie, 320, p. 879
dc.relation.referencesLee, W., Yuk, S.B., Choi, J., Kim, H.J., Kim, H.W., Kim, S.H., Kim, B., Kim, J.P., (2014) Dyes Pigm., 102, p. 13
dc.relation.referencesWang, Z., Liang, M., Hao, Y., Zhang, Y., Wang, L., Sun, Z., Xue, S., (2013) J Mater Chem A Mater, 1
dc.relation.referencesAnoua, R., Touhtouh, S., Rkhis, M., El Jouad, M., Hajjaji, A., Belhora, F., Bakasse, M., Zawadzka, A., (2022) Opt Mater (Amst), 127
dc.relation.referencesHailu, Y.M., Nguyen, M.T., Jiang, J.-C., (2018) Phys. Chem. Chem. Phys., 20
dc.relation.referencesTripathi, A., Ganjoo, A., Chetti, P., (2020) Sol. Energy, 209, p. 194
dc.relation.referencesParr, R.G., Pearson, R.G., (1983) J. Am. Chem. Soc., 105, p. 7512
dc.relation.referencesRoy, R.K., Krishnamurti, S., Geerlings, P., Pal, S., (1998) J. Phys. Chem. A, 102, p. 3746
dc.relation.referencesPearson, R.G., Palke, W.E., (1992) J. Phys. Chem., 96, p. 3283
dc.relation.referencesParr, R.G., Szentpály, L.V., Liu, S., (1922) J. Am. Chem. Soc., 121, p. 1999
dc.relation.referencesPounraj, P., Ramasamy, P., Senthil Pandian, M., (2021) J Mol Graph Model, 102
dc.relation.referencesGázquez, J.L., Cedillo, A., Vela, A., (1966) J. Phys. Chem. A, 2007 (111)
dc.relation.referencesAnselmi, C., Mosconi, E., Pastore, M., Ronca, E., De Angelis, F., (2012) Phys. Chem. Chem. Phys., 14
dc.relation.referencesLi, M.-H., Yum, J.-H., Moon, S.-J., Chen, P., (2016) Energies (Basel), 9, p. 331
dc.relation.referencesHara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Arakawa, H., (2003) J. Phys. Chem. B, 107, p. 597
dc.relation.referencesIslam, A., Sugihara, H., Arakawa, H., (2003) J Photochem Photobiol A Chem, 158, p. 131
dc.relation.referencesYang, Z., Liu, Y., Liu, C., Lin, C., Shao, C., (2016) Spectrochim Acta A Mol Biomol Spectrosc, 167, p. 127
dc.relation.referencesNing, Z., Zhang, Q., Wu, W., Pei, H., Liu, B., Tian, H., (2008) J. Org. Chem., 73, p. 3791
dc.relation.referencesEstrella, L.L., Balanay, M.P., Kim, D.H., (2016) J. Phys. Chem. A, 120, p. 5917
dc.relation.referencesKong, L.-X., Zhang, C.-S., Xia, Q.-Y., Ju, X.-H., (2020) Mol. Simul., 46, p. 128
dc.relation.referencesMarcus, R.A., (1956) J. Chem. Phys., 24, p. 966
dc.relation.referencesMarcus, R.A., (1993) Rev. Mod. Phys., 65, p. 599
dc.relation.referencesLi, Y., Li, Y., Song, P., Ma, F., Liang, J., Sun, M., (2017) RSC Adv., 7
dc.relation.referencesHutchison, G.R., Ratner, M.A., Marks, T.J., (2005) J. Am. Chem. Soc., 127, p. 2339
dc.relation.referencesYang, Z., Liu, Y., Liu, C., Lin, C., Shao, C., (2016) Spectrochim Acta A Mol Biomol Spectrosc, 167, p. 127
dc.relation.referencesPelet, S., Moser, J.-E., Grätzel, M., (2000) J. Phys. Chem. B, 104, p. 1791
dc.relation.referencesWang, Z.-S., Li, F.-Y., Huang, C.-H., (2001) J. Phys. Chem. B, 105, p. 9210
dc.relation.referencesPrajongtat, P., Suramitr, S., Nokbin, S., Nakajima, K., Mitsuke, K., Hannongbua, S., (2017) J Mol Graph Model, 76, p. 551
dc.relation.referencesO'boyle, N.M., Tenderholt, A.L., Langner, K.M., (2008) J. Comput. Chem., 29, p. 839
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem