dc.contributor.author | Ballesteros J.A | |
dc.contributor.author | Ramírez V. G.M | |
dc.contributor.author | Moreira F | |
dc.contributor.author | Solano A | |
dc.contributor.author | Pelaez C.A. | |
dc.date.accessioned | 2024-07-31T21:06:57Z | |
dc.date.available | 2024-07-31T21:06:57Z | |
dc.date.created | 2024 | |
dc.identifier.isbn | 9783031579813 | |
dc.identifier.issn | 18650929 | |
dc.identifier.uri | http://hdl.handle.net/11407/8426 | |
dc.description | The paper presents a work with AI on using computer vision algorithms to detect human emotions in the context of the video when the user looks at different video images. This work aims to present the development of software that detects emotions by recognizing users’ facial expressions using AI algorithms and image process pipelines. The process of seeing emotions is done by evaluating users with images, which has allowed the application of computer vision algorithms that detect images according to the authors of the discipline of psychology, who propose the emotions and how they can be recognized. In this work, it has been demonstrated that it is possible to recognize emotions with the algorithms used and the development and training of the software performed from facial expressions. However, for a correct interpretation of emotions, the system must be trained in a context with more images and other complementary algorithms that allow differentiating emotions represented by facial expressions with very similar patterns to improve certainty and accuracy. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192388466&doi=10.1007%2f978-3-031-57982-0_14&partnerID=40&md5=d7d7a4276a46c15e2f06e8f074c25c30 | |
dc.source | Communications in Computer and Information Science | |
dc.source | Commun. Comput. Info. Sci. | |
dc.source | Scopus | |
dc.subject | AI | eng |
dc.subject | Facial emotion | eng |
dc.subject | Recognition | eng |
dc.title | Facial Emotion Recognition with AI | eng |
dc.type | conference paper | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Sistemas | spa |
dc.type.spa | Documento de conferencia | |
dc.identifier.doi | 10.1007/978-3-031-57982-0_14 | |
dc.relation.citationvolume | 1877 CCIS | |
dc.relation.citationstartpage | 169 | |
dc.relation.citationendpage | 184 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Ballesteros, J.A., Universidad de la Rioja, Logroño, Spain | |
dc.affiliation | Ramírez V., G.M., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Moreira, F., REMIT, Universidade Portucalense and IEETA, Universidade de Aveiro, Aveiro, Portugal | |
dc.affiliation | Solano, A., Universidad Autónoma de Occidente, Kmt.2 Vía Cali-Jamundí, Cali, Colombia | |
dc.affiliation | Pelaez, C.A., Universidad Autónoma de Occidente, Kmt.2 Vía Cali-Jamundí, Cali, Colombia | |
dc.relation.references | Banafa, A., Qué es la computación afectiva? (2016) Obtenido De Openmind BBVA, , https://www.bbvaopenmind.com/tecnologia/mundo-digital/que-es-la-computacion-afectiva/ | |
dc.relation.references | Darwin, C., Prodger, P., (1996) The Expression of the Emotions in Man and Animals, , Oxford University Press, Oxford | |
dc.relation.references | Ekman, P., (1994) Strong Evidence for Universals in Facial Expressions: A Reply to Russell’s Mistaken Critique | |
dc.relation.references | Salovey, P., Mayer, J., Emotional Intelligence (1990) Imagin. Cogn. Pers., 9 (3), pp. 185-211 | |
dc.relation.references | García, A.R., La educación emocional, el autoconcepto, la autoestima y su importancia en la infancia (2013) Estudios Y Propuestas Socioeducativas, 44, pp. 241-257 | |
dc.relation.references | Russell, J.A., A circumplex model of effect (1980) J. Pers. Soc. Psychol., 39 (6), p. 1161 | |
dc.relation.references | Ekman, P., (1999) Basic Emotions. En in Handbook of Cognition and Emotion, pp. 45-60 | |
dc.relation.references | Rusell, J.A., (1997) Reading Emotions from and into Faces: Resurrecting a Dimensional-Contextual Perspective | |
dc.relation.references | Plutchik, R., The nature of emotions (2001) Am. Sci., 89 (4), pp. 334-350 | |
dc.relation.references | Plutchik, R.E., Conte, H.R., Circumplex models of personality and emotions (1997) Am. Psychol. Ass. Xi, p. 484 | |
dc.relation.references | Bledsoe, W.W., Man-Machine Facial Recognition: Report on a Large-Scale Experiment (1966) Technical Report PRI, 22. , Panoramic Research, Palo Alto, California | |
dc.relation.references | Schapire, R.E., Explaining Adaboost (2013) Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik | |
dc.relation.references | Wang, Y.Q., An analysis of the Viola-Jones face detection algorithm (2014) Image Process. Line, 4, pp. 128-148. , https://doi.org/10.5201/ipol.2014.104 | |
dc.relation.references | Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2017) Advances in Neural Information Processing Systems, Vol. 25(2), , https://doi.org/10.1145/3065386 | |
dc.relation.references | Simonyan, K., Zisserman, A., (2014) Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, , https://arxiv.org/pdf/1409.1556.pdf%E3%80%82 | |
dc.relation.references | Sotil, D.A., RPubs (2022) Obtenido De, , https://rpubs.com/ | |
dc.relation.references | Mathworks (2022).https://www.mathworks.com/help/images/integral-image.html | |
dc.relation.references | Thomas, J.R., Nelson, J.K., Silverman, S.J., (2005) Research Methods in Physical. Human Kinetics, , 5th ed | |
dc.relation.references | (2003) Metodología De La Investigación, , Chile: McGraw Hill | |
dc.relation.references | Albaladejo, X., Díaz, J.R., Quesada, A.X., Iglesias, J.: proyectos agiles.org. Obtenido de (2021).https://proyectosagiles.org/pm-partners | |
dc.relation.references | Zhang, K., Zhang, Z., Li, Z., Qiao, Y., Joint face detection and alignment using multitask cascaded convolutional networks (2016) IEEE Signal Process. Lett., 23 (10), pp. 1499-1503 | |
dc.relation.references | Centeno, I.D.P., MTCNN face detection implementation for TensorFlow (2021) As a Pip Package, , https://github.com/ipazc/mtcnn | |
dc.relation.references | Chollet, F., Xception: Deep learning with depthwise separable convolutions (2016) Comput. Vis. Pattern Recogn., , https://doi.org/10.1109/CVPR.2017.195 | |
dc.relation.references | FER-2013 (2019) Obtenido De, , https://www.kaggle.com/ | |
dc.relation.references | Choi, D., Song, B., Facial micro-expression recognition using two-dimensional landmark feature maps (2020) IEEE Access, 8, pp. 121549-121563. , https://doi.org/10.1109/ACCESS.2020.3006958 | |
dc.relation.references | Park, S., Kim, B., Chilamkurti, N.: A robust facial expression recognition algorithm based on multi-rate feature fusion scheme. Sensors (Basel, Switzerland) 21, 6954 (2021). https://doi. org/10.3390/s21216954 | |
dc.relation.references | Abdel-Hamid, L., An efficient machine learning-based emotional valence recognition approach towards wearable EEG. Sensors (Basel (2023) Switzerland), 23, p. 1255. , https://doi.org/10.3390/s23031255 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |
dc.contributor.event | 9th Iberoamerican Workshop, HCI-COLLAB 2023, Buenos Aires, Argentina, September 13–15, 2023, Revised Selected Papers | |