Show simple item record

dc.contributor.authorBallesteros J.A
dc.contributor.authorRamírez V. G.M
dc.contributor.authorMoreira F
dc.contributor.authorSolano A
dc.contributor.authorPelaez C.A.
dc.date.accessioned2024-07-31T21:06:57Z
dc.date.available2024-07-31T21:06:57Z
dc.date.created2024
dc.identifier.isbn9783031579813
dc.identifier.issn18650929
dc.identifier.urihttp://hdl.handle.net/11407/8426
dc.descriptionThe paper presents a work with AI on using computer vision algorithms to detect human emotions in the context of the video when the user looks at different video images. This work aims to present the development of software that detects emotions by recognizing users’ facial expressions using AI algorithms and image process pipelines. The process of seeing emotions is done by evaluating users with images, which has allowed the application of computer vision algorithms that detect images according to the authors of the discipline of psychology, who propose the emotions and how they can be recognized. In this work, it has been demonstrated that it is possible to recognize emotions with the algorithms used and the development and training of the software performed from facial expressions. However, for a correct interpretation of emotions, the system must be trained in a context with more images and other complementary algorithms that allow differentiating emotions represented by facial expressions with very similar patterns to improve certainty and accuracy. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85192388466&doi=10.1007%2f978-3-031-57982-0_14&partnerID=40&md5=d7d7a4276a46c15e2f06e8f074c25c30
dc.sourceCommunications in Computer and Information Science
dc.sourceCommun. Comput. Info. Sci.
dc.sourceScopus
dc.subjectAIeng
dc.subjectFacial emotioneng
dc.subjectRecognitioneng
dc.titleFacial Emotion Recognition with AIeng
dc.typeconference paper
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemasspa
dc.type.spaDocumento de conferencia
dc.identifier.doi10.1007/978-3-031-57982-0_14
dc.relation.citationvolume1877 CCIS
dc.relation.citationstartpage169
dc.relation.citationendpage184
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationBallesteros, J.A., Universidad de la Rioja, Logroño, Spain
dc.affiliationRamírez V., G.M., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.affiliationMoreira, F., REMIT, Universidade Portucalense and IEETA, Universidade de Aveiro, Aveiro, Portugal
dc.affiliationSolano, A., Universidad Autónoma de Occidente, Kmt.2 Vía Cali-Jamundí, Cali, Colombia
dc.affiliationPelaez, C.A., Universidad Autónoma de Occidente, Kmt.2 Vía Cali-Jamundí, Cali, Colombia
dc.relation.referencesBanafa, A., Qué es la computación afectiva? (2016) Obtenido De Openmind BBVA, , https://www.bbvaopenmind.com/tecnologia/mundo-digital/que-es-la-computacion-afectiva/
dc.relation.referencesDarwin, C., Prodger, P., (1996) The Expression of the Emotions in Man and Animals, , Oxford University Press, Oxford
dc.relation.referencesEkman, P., (1994) Strong Evidence for Universals in Facial Expressions: A Reply to Russell’s Mistaken Critique
dc.relation.referencesSalovey, P., Mayer, J., Emotional Intelligence (1990) Imagin. Cogn. Pers., 9 (3), pp. 185-211
dc.relation.referencesGarcía, A.R., La educación emocional, el autoconcepto, la autoestima y su importancia en la infancia (2013) Estudios Y Propuestas Socioeducativas, 44, pp. 241-257
dc.relation.referencesRussell, J.A., A circumplex model of effect (1980) J. Pers. Soc. Psychol., 39 (6), p. 1161
dc.relation.referencesEkman, P., (1999) Basic Emotions. En in Handbook of Cognition and Emotion, pp. 45-60
dc.relation.referencesRusell, J.A., (1997) Reading Emotions from and into Faces: Resurrecting a Dimensional-Contextual Perspective
dc.relation.referencesPlutchik, R., The nature of emotions (2001) Am. Sci., 89 (4), pp. 334-350
dc.relation.referencesPlutchik, R.E., Conte, H.R., Circumplex models of personality and emotions (1997) Am. Psychol. Ass. Xi, p. 484
dc.relation.referencesBledsoe, W.W., Man-Machine Facial Recognition: Report on a Large-Scale Experiment (1966) Technical Report PRI, 22. , Panoramic Research, Palo Alto, California
dc.relation.referencesSchapire, R.E., Explaining Adaboost (2013) Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik
dc.relation.referencesWang, Y.Q., An analysis of the Viola-Jones face detection algorithm (2014) Image Process. Line, 4, pp. 128-148. , https://doi.org/10.5201/ipol.2014.104
dc.relation.referencesKrizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2017) Advances in Neural Information Processing Systems, Vol. 25(2), , https://doi.org/10.1145/3065386
dc.relation.referencesSimonyan, K., Zisserman, A., (2014) Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, , https://arxiv.org/pdf/1409.1556.pdf%E3%80%82
dc.relation.referencesSotil, D.A., RPubs (2022) Obtenido De, , https://rpubs.com/
dc.relation.referencesMathworks (2022).https://www.mathworks.com/help/images/integral-image.html
dc.relation.referencesThomas, J.R., Nelson, J.K., Silverman, S.J., (2005) Research Methods in Physical. Human Kinetics, , 5th ed
dc.relation.references(2003) Metodología De La Investigación, , Chile: McGraw Hill
dc.relation.referencesAlbaladejo, X., Díaz, J.R., Quesada, A.X., Iglesias, J.: proyectos agiles.org. Obtenido de (2021).https://proyectosagiles.org/pm-partners
dc.relation.referencesZhang, K., Zhang, Z., Li, Z., Qiao, Y., Joint face detection and alignment using multitask cascaded convolutional networks (2016) IEEE Signal Process. Lett., 23 (10), pp. 1499-1503
dc.relation.referencesCenteno, I.D.P., MTCNN face detection implementation for TensorFlow (2021) As a Pip Package, , https://github.com/ipazc/mtcnn
dc.relation.referencesChollet, F., Xception: Deep learning with depthwise separable convolutions (2016) Comput. Vis. Pattern Recogn., , https://doi.org/10.1109/CVPR.2017.195
dc.relation.referencesFER-2013 (2019) Obtenido De, , https://www.kaggle.com/
dc.relation.referencesChoi, D., Song, B., Facial micro-expression recognition using two-dimensional landmark feature maps (2020) IEEE Access, 8, pp. 121549-121563. , https://doi.org/10.1109/ACCESS.2020.3006958
dc.relation.referencesPark, S., Kim, B., Chilamkurti, N.: A robust facial expression recognition algorithm based on multi-rate feature fusion scheme. Sensors (Basel, Switzerland) 21, 6954 (2021). https://doi. org/10.3390/s21216954
dc.relation.referencesAbdel-Hamid, L., An efficient machine learning-based emotional valence recognition approach towards wearable EEG. Sensors (Basel (2023) Switzerland), 23, p. 1255. , https://doi.org/10.3390/s23031255
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín
dc.contributor.event9th Iberoamerican Workshop, HCI-COLLAB 2023, Buenos Aires, Argentina, September 13–15, 2023, Revised Selected Papers


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record