dc.contributor.author | Villafán-Sierra M | |
dc.contributor.author | Blessent D | |
dc.contributor.author | Lopez-Sanchez J | |
dc.contributor.author | Arrieta-Gonzalez C.E | |
dc.contributor.author | Gonzalez-Palacio M. | |
dc.date.accessioned | 2024-07-31T21:06:57Z | |
dc.date.available | 2024-07-31T21:06:57Z | |
dc.date.created | 2024 | |
dc.identifier.isbn | 9783031521706 | |
dc.identifier.issn | 18653529 | |
dc.identifier.uri | http://hdl.handle.net/11407/8428 | |
dc.description | Geothermal energy has been widely recognized as a renewable, clean, cost-effective, source of energy that can be an alternative to fossil fuels. Geothermal Heat Pumps (GHPs) are tools that can extract heat from subsoil, surface water bodies, or groundwater. In Colombia, geothermal energy is one of the least developed and known non-conventional renewable energy sources. To reduce the operating costs associated with the cooling at 3 °C of a flower’s preservation room in the municipality of La Ceja, a surface water source heat pump (SWHP) and a horizontal ground-coupled heat pump (GCHP) were evaluated as energy alternatives. The temperatures in a rainwater harvesting pond and soil were monitored to analyze their potential as a heat sink for the proposed geothermal installations. The water temperature varied with outdoor conditions due to the shallowness of the pond. In contrast, the soil temperature was characterized by an almost constant value. Based on the data collected, it is determined that only during a portion of the day of 4 h (9:00–13:00) suggesting the efficiency of a SWSHP system is higher than the traditional refrigeration system currently used. This result indicates that a single SWSHP is not sufficient to provide the required cooling load. Therefore, a horizontal GCHP is suggested as an alternative installation to be used. This work promotes the use of geothermal resources in Colombia and is also a valuable contribution for the entire Caribbean and Latin America region, where GHPs are not commonly used. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188662919&doi=10.1007%2f978-3-031-52171-3_8&partnerID=40&md5=73cfcc6a5cf6a70414f48d07b504fc9c | |
dc.source | Green Energy and Technology | |
dc.source | Green Energy and Technology | |
dc.source | Scopus | |
dc.subject | Colombia | eng |
dc.subject | Geothermal heat pump | eng |
dc.subject | Pond | eng |
dc.subject | Soil | eng |
dc.subject | Temperature | eng |
dc.subject | Cost effectiveness | eng |
dc.subject | Fossil fuels | eng |
dc.subject | Geothermal fields | eng |
dc.subject | Geothermal heat pumps | eng |
dc.subject | Groundwater | eng |
dc.subject | Installation | eng |
dc.subject | Lakes | eng |
dc.subject | Operating costs | eng |
dc.subject | Pumps | eng |
dc.subject | Refrigeration | eng |
dc.subject | Temperature | eng |
dc.subject | Tropics | eng |
dc.subject | Alternative to fossil fuels | eng |
dc.subject | Colombia | eng |
dc.subject | Cost effective | eng |
dc.subject | Ground coupled heat pump | eng |
dc.subject | Renewable energy source | eng |
dc.subject | Sources of energy | eng |
dc.subject | Surface water body | eng |
dc.subject | Surface water sources | eng |
dc.subject | Tropical climates | eng |
dc.subject | Water source heat pump | eng |
dc.subject | Soils | eng |
dc.title | Feasibility of Shallow Geothermal Installations for Cooling Purposes in Tropical Climate | eng |
dc.type | conference paper | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Ambiental | spa |
dc.publisher.program | Ingeniería de Telecomunicaciones | spa |
dc.publisher.program | Ingeniería en Energía | spa |
dc.type.spa | Documento de conferencia | |
dc.identifier.doi | 10.1007/978-3-031-52171-3_8 | |
dc.relation.citationstartpage | 121 | |
dc.relation.citationendpage | 138 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Villafán-Sierra, M., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Blessent, D., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Lopez-Sanchez, J., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Arrieta-Gonzalez, C.E., Programa de Ingeniería en Energía, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Gonzalez-Palacio, M., Programa de Ingeniería en Telecomunicaciones, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Naili, N., Hazami, M., Attar, I., Farhat, A., Assessment of surface geothermal energy for air conditioning in northern Tunisia: Direct test and deployment of ground source heat pump system (2016) Energy Build, 111, pp. 207-217 | |
dc.relation.references | Rivas-Cruz, F., Onofre-Hilario, F., Fuentes-Torres, R., Torres-Luna, V., Gonzales-Reyes, I., (2018) Ground Heat Exchanger Software: State of Art. XXV Congreso Anual De La Asociación Geotérmica Mexicana, pp. 18-20 | |
dc.relation.references | Wang, G., Wang, W., Luo, J., Zhang, Y., Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China (2019) Renew. Sust. Energ. Rev., 111, pp. 392-421 | |
dc.relation.references | Lund, J.W., Toth, A.N., (2021) Direct Utilization of Geothermal Energy 2020 Worldwide Review, pp. 1-39. , Proceeding World Geothermal Congress 2020+1 | |
dc.relation.references | Perovic, P., Trucco, C., Tálamo, A., Quiroga, V., Ramallo, D., Lacci, A., Baungardner, A., Mohr, F., (2010) Guía técnica De diseño De Bomba De Calor geotérmica | |
dc.relation.references | US department of Energy: How Geothermal Heat Pumps Work (2011) Energy Efficiency and Renewable Energy, , https://energy.gov/sites/prod/files/guide_to_geothermal_heat_pumps.pdf | |
dc.relation.references | Banks, D., (2012) An Introduction to Thermogeology: Ground Source Heating and Cooling, 2, pp. 1-539. , Wiley-Blackwell | |
dc.relation.references | Mitchell, M.S., Spitler, J.D., Open-loop direct surface water cooling and surface water heat pump systems – A review (2013) HVAC&R Res, 19 (2), pp. 125-140 | |
dc.relation.references | CIBSE Heat Pump Association – HPA and GSHP Association: Surface Water Source Heat Pump: Code of Practice (2015) | |
dc.relation.references | Luo, J., Luo, Z., Xie, J., Xia, D., Huang, W., Shao, H., Xiang, W., Rohn, J., Investigation of shallow geothermal potentials for different types of ground source heat pump systems (GSHP) of Wuhan city in China (2017) Renew. Energy., 118, pp. 230-244 | |
dc.relation.references | Rafferty, K: An information survival kit for the prospective geothermal heat pump owner (2001) Geo-Heat Center, , March | |
dc.relation.references | Yang, H., Cui, P., Fang, Z., Vertical-borehole ground-coupled heat pumps: A review of models and systems (2010) Appl. Energy., 87 (1), pp. 16-27 | |
dc.relation.references | Gischler, C., Perks, M., González, C., Correa, C., Aragón, R., Haratsu, M., García Fernandez, J., Siroit, G., (2020) Harnessing Geothermal Potential in Latin America and the Caribbean: A Perspective on the Road Ahead, , Inter-American Development Bank (IDB | |
dc.relation.references | Ministerio Federal de Cooperación Económica y Desarrollo-BMZ: Fomento de la geotermia en Centroamérica (2021) Deutsche Gesellschaft Für Internationale Zusammenarbeit (GIZ) Gmbh | |
dc.relation.references | CEGA – Centro de Excelencia en Geotermia de los Andes, Homepage (2017). http://www. cega-uchile.cl/investigacion/#lineas-de-investigacion. Accessed 12 July 2023 | |
dc.relation.references | Rodríguez Leguizamon, A.G., (2021) Energía Geotérmica Para Viviendas En Córdoba | |
dc.relation.references | Corbacho Morales, J.A., (2018) Diseño Y climatización De Una Casa Residencial Mediante Una Bomba De Calor geotérmica De Muy Baja Temperatura En La Ciudad De Lima-La Molina | |
dc.relation.references | (2023) En Perspectiva Homepage, , https://enperspectiva.uy/en-perspectiva-programa/entrevistas/centro-educativo-de-casavalle-realiza-la-primera-experiencia-con-energia-geotermica-en-uruguay/. Accessed 12, July | |
dc.relation.references | (2023) Ministerio De Ambiente Homepage, , https://www.gub.uy/ministerio-ambiente/comunicacion/convocatorias/convocatoria-proyectos-para-desarrollo-proyecto-piloto-geotermia-baja. Accessed 12, July | |
dc.relation.references | Ortiz, A., Avances y experiencias prácticas en el diseño y construcción de sistemas geotérmicos de baja entalpía (2020) Comité Regional De La CIER Para Centroamérica Y El Caribe, , https://www.youtube.com/watch?v=P5mcg1XfwmE | |
dc.relation.references | Poveda, G., La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna (2004) Acad. Colomb. Cienc., 28 (107), pp. 201-222 | |
dc.relation.references | Ramírez-Builes, V.H., Jaramillo-Robledo, Á., Relación entre el índice oceánico de El Niño y la lluvia, en la región Andina central de Colombia (2009) Cenicafé, 60 (2), p. 172. , https://biblioteca. cenicafe.org/bitstream/10778/228/1/arc060%2802%29161-172.pdf | |
dc.relation.references | (2023) Rainforest Alliance Homepage.: Https://Www.Rainforest-Alliance.Org/Es/Perspectivas/Que-Significa-Rainforest-Alliance-Certified/. Accessed 1, p. 2. , July | |
dc.relation.references | (2023) Falcon Farms Homepage, , https://falconfarmsonline.com/. Accessed 12, July | |
dc.relation.references | (2023) Falcon Farms Homepage, , https://falconfarmsonline.com/la-virginia-farm/. Accessed 12, July | |
dc.relation.references | Bhatia, A., Cooling load calculations and principles (2006) Energy Policy, pp. 4081-4092 | |
dc.relation.references | (2017) American Society of Heating, , Refrigerating and Air-Conditioning engineers: Manual-Fundamentals Guidelines | |
dc.relation.references | Danfoss Homepage.: https://www.danfoss.com/en-us/service-and-support/downloads/dcs/coolselector-2/. Accessed 12 July 2023 | |
dc.relation.references | Shang, R., Zhang, Y., Shi, W., Wang, X., Zhang, Y., Fresh look and understanding on Carnot cycle (2014) Energy Procedia, 61, pp. 2898-2901 | |
dc.relation.references | Aravena, D., Garcia, K., Muñoz, M., Maripangui, R., (2015) Propiedades Termales De Sedimentos En Coyhaique, , Santiago | |
dc.relation.references | Gutierrez-Soleibe, F., (2021) Propuesta De instalación geotérmica Somera a Partir De Bombas De Calor Para La climatización De Espacios En La Universidad EIA | |
dc.relation.references | (2009) IGSHPA: Ground Source Heat Pump Residential and Light Commercial. Design and Instalation Guide, , Oklahoma State University | |
dc.relation.references | Kavanaugh, S., Pond loops, lake loops, or surface water heat pumps (1999) Outside the Loop a Newsletter for Geothermal Heat Pump Designers and Installers, pp. 1-8 | |
dc.relation.references | Kavanaugh, S., Rafferty, K., Geothermal heating and cooling: Design of ground-source heat pump systems. ASHRAE (2014) ISBN: 9781936504855 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |
dc.contributor.event | Congress on Research, Development, and Innovation in Renewable Energies, CIDiER 2022 | |