Show simple item record

dc.contributor.authorRamirez-Neria M
dc.contributor.authorGonzalez-Sierra J
dc.contributor.authorRamirez-Juarez R
dc.contributor.authorTejada J.C
dc.contributor.authorToro-Ossaba A
dc.contributor.authorNoguera A
dc.contributor.authorRua S.
dc.date.accessioned2024-07-31T21:07:14Z
dc.date.available2024-07-31T21:07:14Z
dc.date.created2023
dc.identifier.isbn9798350324723
dc.identifier.urihttp://hdl.handle.net/11407/8513
dc.descriptionThis paper proposes combining displacement-based and distance-based approaches to design a strategy for regulation control with collision avoidance for two differential-drive mobile robots. For the attractive control law, the displacement-based method is used. By employing a coordinates change, the front point of the robot is considered to avoid singularities in the control strategy. For the repulsive control law, the displacement-based technique is considered. In this sense, the distance and angle formation dynamics between robots are determined by applying the same coordinates change. Based on those mentioned above, the control strategy consists of two parts: the former, with negative feedback, which is capable to drive the robots to their desired position, while the latter, with positive feedback, which allows to create an unstable focus that produces a counterclockwise angular movement and makes that the robots move away from each other, avoiding collisions between them. Experimental results show the effectiveness of the proposed control law. © 2023 IEEE.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics engineers Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85180792892&doi=10.1109%2fCCAC58200.2023.10333810&partnerID=40&md5=f414783d4dbbe4897d217dab8becf882
dc.sourceProceedings of the 2023 IEEE 6th Colombian Conference on Automatic Control, CCAC 2023
dc.sourceProc. IEEE Colomb. Conf. Autom. Control, CCAC
dc.sourceScopus
dc.subjectCollision avoidanceeng
dc.subjectDifferential-drive mobile robotseng
dc.subjectDistance-based approacheng
dc.titleDistance and Angle Formation Scheme for Collision Avoidance of Differential-drive Mobile Robotseng
dc.typeconference paper
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaDocumento de conferencia
dc.identifier.doi10.1109/CCAC58200.2023.10333810
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRamirez-Neria, M., Universidad Iberoamericana Ciudad de Mexico, Institute of Applied Research and Technology, Ciudad de Mexico, Mexico
dc.affiliationGonzalez-Sierra, J., Instituto Politecnico Nacional, Unidad Profesional Interdisciplinaria de Ingenieria Campus Hidalgo, San Agustin Tlaxiaca, Hidalgo, Mexico
dc.affiliationRamirez-Juarez, R., Universidad Iberoamericana Ciudad de Mexico, Institute of Applied Research and Technology, Ciudad de Mexico, Mexico
dc.affiliationTejada, J.C., Universidad EIA, Computational Intelligence and Automation Research Group (GIICA), Envigado, Colombia
dc.affiliationToro-Ossaba, A., Universidad EIA, Computational Intelligence and Automation Research Group (GIICA), Envigado, Colombia
dc.affiliationNoguera, A., Universidad Nacional Abierta y A Distancia, ECBTI, Yopal, Colombia
dc.affiliationRua, S., Universidad de Medellin, Electronics and Telecommunications engineering Department, Medellin, Colombia
dc.relation.referencesYasin, J.N., Mohamed, S.A.S., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H., Plosila, J., Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches (2020) IEEE Access, 8, pp. 105139-105155
dc.relation.referencesSui, Z., Pu, Z., Yi, J., Wu, S., Formation control with collision avoidance through deep reinforcement learning using model-guided demonstration (2021) IEEE Transactions on Neural Networks and Learning Systems, 32 (6), pp. 2358-2372
dc.relation.referencesZu, C., Yang, C., Wang, J., Gao, W., Cao, D., Wang, F.-Y., Simulation and field testing of multiple vehicles collision avoidance algorithms (2020) IEEE/ CAA Journal of Automatica Sinica, 7 (4), pp. 1045-1063
dc.relation.referencesSmith, N., Cobb, R., Pierce, S., Raska, V., Optimal collision avoidance trajectories via direct orthogonal collocation for unmanned/remotely piloted aircraft sense and avoid operations (2014) AIAA Guidance, Navigation, and Control Conference, pp. 1-25
dc.relation.referencesPolvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R., Obstacle avoidance approaches for autonomous navigation of unmanned surface vehicles (2018) The Journal of Navigation, 71 (1), pp. 241-256
dc.relation.referencesGronemeyer, M., Horn, J., Collision avoidance for cooperative formation control of a robot group (2019) IFAC-PapersOnLine, 52 (8), pp. 434-439
dc.relation.referencesSruthi, M., Rao, K.K., Jisha, V., Vector field based formation control of multi-robot system (2016) IFAC-PapersOnLine, 49 (1), pp. 189-194
dc.relation.referencesNa, S., Niu, H., Lennox, B., Arvin, F., Bio-inspired collision avoidance in swarm systems via deep reinforcement learning (2022) IEEE Transactions on Vehicular Technology, 71 (3), pp. 2511-2526
dc.relation.referencesKhatib, O., Real-Time obstacle avoidance for manipulators and mobile robots (1985) Proceedings 1985 IEEE International Conference on Robotics and Automation, 2, pp. 500-505
dc.relation.referencesDou, L., Yu, X., Liu, L., Wang, X., Feng, G., Moving-Target enclosing control for mobile agents with collision avoidance (2021) IEEE Transactions on Control of Network Systems, 8 (4), pp. 1669-1679
dc.relation.referencesHu, J., Zhang, H., Liu, L., Zhu, X., Zhao, C., Pan, Q., Convergent multiagent formation control with collision avoidance (2020) IEEE Transactions on Robotics, 36 (6), pp. 1805-1818
dc.relation.referencesMao, R., Dai, H., Distributed non-convex model predictive control for non-cooperative collision avoidance of networked differential drive mobile robots (2021) IEEE Access, pp. 1-9
dc.relation.referencesPanagou, D., Motion planning and collision avoidance using navigation vector fields (2014) 2014 IEEE International Conference on Robotics and Automation (ICRA, pp. 2513-2518
dc.relation.referencesRaj, J., Raghuwaiya, K., Vanualailai, J., Collision avoidance of 3d rectangular planes by multiple cooperating autonomous agents (2020) Journal of Advanced Transportation, 2020 (6), pp. 1-13
dc.relation.referencesSakai, D., Fukushima, H., Matsuno, F., Leader-follower navigation in obstacle environments while preserving connectivity without data transmission (2018) IEEE Transactions on Control Systems Technology, 26 (4), pp. 1233-1248
dc.relation.referencesSeung-Mok, L., Hyun, M., Receding horizon particle swarm optimisation-based formation control with collision avoidance for nonholonomic mobile robots (2015) IET Control Theory & Applications, 9 (14), pp. 2075-2083
dc.relation.referencesFlores-Resendiz, J.F., Aranda-Bricaire, E., Gonzalez-Sierra, J., Santiaguillo-Salinas, J., Finite-Time formation control without collisions for multiagent systems with communication graphs composed of cyclic paths (2015) Mathematical Problems in engineering, pp. 1-17
dc.relation.referencesHernandez-Martinez, E., Aranda-Bricaire, E., Collision avoidance in formation control using discontinuous vector fields (2013) IFAC Proceedings Volumes, 46 (23), pp. 797-802
dc.relation.referencesFlores-Resendiz, J.F., Aranda-Bricaire, E., A general solution to the formation control problem without collisions for first order multi-Agent systems (2020) Robotica, 38 (6), pp. 1123-1137
dc.relation.referencesSantiaguillo-Salinas, J., Aranda-Bricaire, E., Motion coordination problems with collision avoidance for multiagent systems, " in (Ed (2017) Multi-Agent Systems. IntechOpen, Pp, pp. 17-41
dc.relation.referencesHuang, S., Teo, R.S.H., Tan, K.K., Collision avoidance of multi unmanned aerial vehicles: A review (2019) Annual Reviews in Control, 48, pp. 147-164
dc.relation.referencesWei, Z., Meng, Z., Lai, M., Wu, H., Han, J., Feng, Z., Anti-collision technologies for unmanned aerial vehicles: Recent advances and future trends (2021) IEEE Internet of Things Journal, pp. 6638-7619
dc.relation.referencesRamirez-Neria, M., Gonzalez-Sierra, J., Luviano-Juarez, A., Lozada-Castillo, N., Madonski, R., Active disturbance rejection strategy for distance and formation angle decentralized control in differential-drive mobile robots (2022) Mathematics, 10 (20), p. 3865
dc.relation.referencesSanchez-Sanchez, A., Hernandez-Martinez, E., Gonzalez-Sierra, J., Ramirez-Neria, M., Flores-Godoy, J., Ferreira-Vazquez, E., Fernandez-Anaya, G., Leader-follower power-based formation control applied to differential-drive mobile robots (2023) Journal of Intelligent & Robotic Systems, 107 (1), p. 6
dc.relation.referencesRamirez-Neria, M., Luviano-Juarez, A., Madonski, R., Ramirez-Juarez, R., Lozada-Castillo, N., Gao, Z., Leader-follower adrc strategy for omnidirectional mobile robots without time-derivatives in the tracking controller (2023) 2023 American Control Conference (ACC IEEE, pp. 405-410
dc.relation.referencesGonzalez-Sierra, J., Hernandez-Martinez, E., Ramirez-Neria, M., Fernandez-Anaya, G., Smooth collision avoidance for the formation control of first order multi-Agent systems (2023) Robotics and Autonomous Systems, 165, p. 104433
dc.relation.referencesRamirez-Neria, M., Gonzalez-Sierra, J., Madonski, R., Ramirez-Juarez, R., Hernandez-Martinez, E.G., Fernandez-Anaya, G., Leader-follower formation and disturbance rejection control for omnidirectional mobile robots (2023) Robotics, 12 (5), p. 122
dc.relation.referencesBrockett, R., Ma, H.U.C., (1983) Asymptotic Stability and Feedback Stabilization. Defense Technical Information Center, , https://books.google.com.mx/books?id=HaJQNwAACAAJ
dc.relation.referencesDesai, J., Ostrowski, J., Kumar, V., Modeling and control of formations of nonholonomic mobile robots (2001) IEEE Transactions on Robotics and Automation, 17 (6), pp. 905-908
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín
dc.contributor.event6th IEEE Colombian Conference on Automatic Control, CCAC 2023


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record