REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater

Thumbnail
Share this
Date
2023
Author
Pérez S
Ulloa M
Flórez E
Acelas N
Ocampo-Pérez R
Padilla-Ortega E
Forgionny A.

Citación

       
TY - GEN T1 - Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater Y1 - 2023 UR - http://hdl.handle.net/11407/8573 PB - Elsevier B.V. AB - This research focused on the development of an adsorbent material from the Tahiti lemon peels (LP) using thermochemical treatment with ZnCl2 at 550 °C, and its application for simultaneous removal of copper ion (Cu2+), and Congo red (CR) from contaminated water resources. Results showed a mesoporous activated carbon with a high area (SBET = 945 m2g−1) and a wide pore distribution (2.0–25 nm), with carboxylate, phenolic and ether as the main functional surface groups. The adsorption experiments showed that LP activated with ZnCl2 (LPZn) exhibited a higher effectiveness than LP without any treatment and LP calcined at 550 °C (CLP). The pH at the point of zero charge (pHPZC) of LP, CLP, and LPZn was 2.78, 8.04, and 4.72, respectively, indicating a wide diversity and proportion of functional groups in the materials. The maximum adsorption capacities of LPZn were 1.78 meq g−1 (618.35 mg g−1) for CR and 0.91 meq g−1 (28.85 mg g−1) for Cu2+, which are comparable with other adsorbents previously reported. In multicomponent systems, at the highest concentration of Cu2+ (90.0 mg L-1 ≈2.9 meq L-1), a favoring of the adsorbed amount of Cu2+ was observed, suggesting the occurrence of a synergistic effect for the presence of Cu2+ under these conditions. Therefore, the material derived from Tahiti lemon peels can be considered a promising adsorbent with good physicochemical properties for the treatment of contaminated wastewater by dyes and heavy metal ions. © 2023 Elsevier B.V. ER - @misc{11407_8573, author = {}, title = {Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater}, year = {2023}, abstract = {This research focused on the development of an adsorbent material from the Tahiti lemon peels (LP) using thermochemical treatment with ZnCl2 at 550 °C, and its application for simultaneous removal of copper ion (Cu2+), and Congo red (CR) from contaminated water resources. Results showed a mesoporous activated carbon with a high area (SBET = 945 m2g−1) and a wide pore distribution (2.0–25 nm), with carboxylate, phenolic and ether as the main functional surface groups. The adsorption experiments showed that LP activated with ZnCl2 (LPZn) exhibited a higher effectiveness than LP without any treatment and LP calcined at 550 °C (CLP). The pH at the point of zero charge (pHPZC) of LP, CLP, and LPZn was 2.78, 8.04, and 4.72, respectively, indicating a wide diversity and proportion of functional groups in the materials. The maximum adsorption capacities of LPZn were 1.78 meq g−1 (618.35 mg g−1) for CR and 0.91 meq g−1 (28.85 mg g−1) for Cu2+, which are comparable with other adsorbents previously reported. In multicomponent systems, at the highest concentration of Cu2+ (90.0 mg L-1 ≈2.9 meq L-1), a favoring of the adsorbed amount of Cu2+ was observed, suggesting the occurrence of a synergistic effect for the presence of Cu2+ under these conditions. Therefore, the material derived from Tahiti lemon peels can be considered a promising adsorbent with good physicochemical properties for the treatment of contaminated wastewater by dyes and heavy metal ions. © 2023 Elsevier B.V.}, url = {http://hdl.handle.net/11407/8573} }RT Generic T1 Valorization of lemon peels wastes into a potential adsorbent for simultaneous removal of copper ion (Cu2+) and Congo red from wastewater YR 2023 LK http://hdl.handle.net/11407/8573 PB Elsevier B.V. AB This research focused on the development of an adsorbent material from the Tahiti lemon peels (LP) using thermochemical treatment with ZnCl2 at 550 °C, and its application for simultaneous removal of copper ion (Cu2+), and Congo red (CR) from contaminated water resources. Results showed a mesoporous activated carbon with a high area (SBET = 945 m2g−1) and a wide pore distribution (2.0–25 nm), with carboxylate, phenolic and ether as the main functional surface groups. The adsorption experiments showed that LP activated with ZnCl2 (LPZn) exhibited a higher effectiveness than LP without any treatment and LP calcined at 550 °C (CLP). The pH at the point of zero charge (pHPZC) of LP, CLP, and LPZn was 2.78, 8.04, and 4.72, respectively, indicating a wide diversity and proportion of functional groups in the materials. The maximum adsorption capacities of LPZn were 1.78 meq g−1 (618.35 mg g−1) for CR and 0.91 meq g−1 (28.85 mg g−1) for Cu2+, which are comparable with other adsorbents previously reported. In multicomponent systems, at the highest concentration of Cu2+ (90.0 mg L-1 ≈2.9 meq L-1), a favoring of the adsorbed amount of Cu2+ was observed, suggesting the occurrence of a synergistic effect for the presence of Cu2+ under these conditions. Therefore, the material derived from Tahiti lemon peels can be considered a promising adsorbent with good physicochemical properties for the treatment of contaminated wastewater by dyes and heavy metal ions. © 2023 Elsevier B.V. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This research focused on the development of an adsorbent material from the Tahiti lemon peels (LP) using thermochemical treatment with ZnCl2 at 550 °C, and its application for simultaneous removal of copper ion (Cu2+), and Congo red (CR) from contaminated water resources. Results showed a mesoporous activated carbon with a high area (SBET = 945 m2g−1) and a wide pore distribution (2.0–25 nm), with carboxylate, phenolic and ether as the main functional surface groups. The adsorption experiments showed that LP activated with ZnCl2 (LPZn) exhibited a higher effectiveness than LP without any treatment and LP calcined at 550 °C (CLP). The pH at the point of zero charge (pHPZC) of LP, CLP, and LPZn was 2.78, 8.04, and 4.72, respectively, indicating a wide diversity and proportion of functional groups in the materials. The maximum adsorption capacities of LPZn were 1.78 meq g−1 (618.35 mg g−1) for CR and 0.91 meq g−1 (28.85 mg g−1) for Cu2+, which are comparable with other adsorbents previously reported. In multicomponent systems, at the highest concentration of Cu2+ (90.0 mg L-1 ≈2.9 meq L-1), a favoring of the adsorbed amount of Cu2+ was observed, suggesting the occurrence of a synergistic effect for the presence of Cu2+ under these conditions. Therefore, the material derived from Tahiti lemon peels can be considered a promising adsorbent with good physicochemical properties for the treatment of contaminated wastewater by dyes and heavy metal ions. © 2023 Elsevier B.V.
URI
http://hdl.handle.net/11407/8573
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com