REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Generalized Pascal Triangle and the Matrix Variate Jensen-Logistic Distribution

Thumbnail
Share this
Date
2015
Author
Caro-Lopera F.J.
Gonzalez-Farias G.
Balakrishnan N.
TY - GEN AU - Caro-Lopera F.J. AU - Gonzalez-Farias G. AU - Balakrishnan N. Y1 - 2015 UR - http://hdl.handle.net/11407/1552 PB - Taylor and Francis Inc. AB - ER - @misc{11407_1552, author = {Caro-Lopera F.J. and Gonzalez-Farias G. and Balakrishnan N.}, title = {}, year = {2015}, abstract = {}, url = {http://hdl.handle.net/11407/1552} }RT Generic A1 Caro-Lopera F.J. A1 Gonzalez-Farias G. A1 Balakrishnan N. YR 2015 LK http://hdl.handle.net/11407/1552 PB Taylor and Francis Inc. AB OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two important problems: (1) the development of analytical and efficient formulae for their k-th derivatives and (2) the use of the derivatives to transform the configuration density into a polynomial density under some special matrix Kummer relation, indexed in this case by the Jensen-Logistic kernel. In this article, we solve these problems by deriving a simple formula for the k-th derivative of the density function, avoiding the usual partition theory framework and using a generalization of Pascal triangles. Then we apply the results by obtaining the associated Jensen-Logistic Kummer relations and the configuration polynomial density in the setting of Statistical Shape Theory. © 2015 Taylor and Francis Group, LLC.
URI
http://hdl.handle.net/11407/1552
Collections
  • Indexados Scopus [1337]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com