dc.creator | Caro-Lopera F.J. | spa |
dc.creator | Gonzalez-Farias G. | spa |
dc.creator | Balakrishnan N. | spa |
dc.date.accessioned | 2015-12-17T19:27:46Z | |
dc.date.available | 2015-12-17T19:27:46Z | |
dc.date.created | 2015 | |
dc.identifier.issn | 3610926 | |
dc.identifier.uri | http://hdl.handle.net/11407/1552 | |
dc.description.abstract | This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two important problems: (1) the development of analytical and efficient formulae for their k-th derivatives and (2) the use of the derivatives to transform the configuration density into a polynomial density under some special matrix Kummer relation, indexed in this case by the Jensen-Logistic kernel. In this article, we solve these problems by deriving a simple formula for the k-th derivative of the density function, avoiding the usual partition theory framework and using a generalization of Pascal triangles. Then we apply the results by obtaining the associated Jensen-Logistic Kummer relations and the configuration polynomial density in the setting of Statistical Shape Theory. © 2015 Taylor and Francis Group, LLC. | eng |
dc.language.iso | eng | |
dc.publisher | Taylor and Francis Inc. | spa |
dc.relation.isversionof | http://www.scopus.com/inward/record.url?eid=2-s2.0-84938842344&partnerID=40&md5=9f33e8e284efa82bc100822e46ade478 | spa |
dc.source | Scopus | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | spa |
dc.contributor.affiliation | Centro de Investigación en Matemáticas, Monterrey, Mexico | spa |
dc.contributor.affiliation | Department of Mathematics and Statistics, McMaster University, Hamilton, Canada | spa |
dc.identifier.doi | 10.1080/03610926.2013.791374 | |
dc.subject.keyword | Generalized Kummer relations | eng |
dc.subject.keyword | Jensen-Logistic distribution | eng |
dc.subject.keyword | Pascal triangle | eng |
dc.subject.keyword | Statistical shape theory | eng |
dc.subject.keyword | Zonal polynomials | eng |
dc.relation.ispartofen | Communications in Statistics - Theory and Methods, 2015, volume 44, issue 13, pp 2738-2752 | eng |
dc.title.english | The Generalized Pascal Triangle and the Matrix Variate Jensen-Logistic Distribution | eng |
dc.type.driver | info:eu-repo/semantics/article | |