Mostrar el registro sencillo del ítem

dc.creatorMontoya Ramírez, Rubén Daríospa
dc.creatorOsorio Arias, Andrésspa
dc.date.accessioned2017-06-15T21:49:40Z
dc.date.available2017-06-15T21:49:40Z
dc.date.created2007
dc.identifier.citationMontoya Ramírez, R., & Osorio Arias, A. (2007). Los modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia. Avances en recursos hidráulicos, 0(15).spa
dc.identifier.issn01215701
dc.identifier.urihttp://hdl.handle.net/11407/3347
dc.descriptionDurante el siglo pasado diferentes autores presentaron sus teorías sobre el oleaje basados en las leyes de la física relacionadas con el movimiento ondulatorio, estas teorías hicieron representaciones de las olas del mar como ondas de amplitud finita o de amplitud pequeña en las cuales la interacción entre ondas podía considerarse como lineal; sin embargo quedaron incompletas al tratar de explicar los mecanismos físicos relacionados con el crecimiento del oleaje. Sólo fue hasta mediados del siglo XX cuando los principales aportes matemáticos y experimentales impulsaron los modelos de generación de oleaje que explicaban de forma más completa y precisa la física del fenómeno. La información del oleaje con características adecuadas es de vital importancia para el diseño de cualquier obra costera, sin embargo ésta no siempre está disponible y es necesario utilizar modelos que permitan suplir dicha información. El presente artículo muestra de forma resumida la caracterización y evolución de los principales modelos que han sido empleados para el pronóstico del oleaje producido por el viento, sus ventajas y desventajas respecto a otros modelos. Por último presenta una recopilación de la información de oleaje disponible en Colombia.spa
dc.descriptionDuring the last century different authors presented their wave action theories based on the laws of the physics related to the undulatory movement, these theories made representations of the sea waves like waves of finite amplitude or small amplitude in which the interaction between waves could be considered like linear; nevertheless they were short when trying to explain the physical mechanisms related to the growth of the wave action. It was until half¬full of century XX when the main mathematical and experimental contributions impelled the models of wave generation that explained of more complete form the physics of the phenomenon. The surge information with the suitable characteristics is too important for the design of any coastal structure, nevertheless not always this information is available, for that reason the use ofmodelsthat allowto replace this information havevital importance. This articlepresents a summarized characterization and evolution of the main models that have been used to forecast the wave action produced by the wind, their advantages and disadvantages respect others. Finally it presents a compilation of information available in Colombiaspa
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.relation.isversionofhttp://revistas.unal.edu.co/index.php/arh/article/view/9325/9968spa
dc.sourceAvances en recursos hidráulicosspa
dc.subjectModelos de Predicciónspa
dc.subjectPronóstico de Oleajespa
dc.subjectOlas de Vientospa
dc.subjectOleajesspa
dc.subjectEcuación de la Energíaspa
dc.subjectOndasspa
dc.subjectPrediction Modelsspa
dc.subjectWave Forecastspa
dc.subjectWind Wavesspa
dc.subjectWave Motionspa
dc.subjectEquation of the Energyspa
dc.subjectWavesspa
dc.titleLos modelos de generación de oleaje de viento: características, evolución y futuras aplicaciones en Colombia spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.publisher.programIngeniería Civilspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.creator.affiliationMontoya Ramírez, Rubén Darío; Universidad de Medellínspa
dc.creator.affiliationOsorio Arias, Andrés; Universidad Nacional de Colombia, Sede Medellínspa
dc.relation.ispartofesAvances en recursos hidráulicos número 15, mayo de 2007spa
dc.relation.referencesAgudelo, P., Restrepo, A.F., Molares R., Tejada C.E., Torres, R. y Osorio A.F., 2005. Determinación del clima medio y extremal en el Caribe colombiano. Boletín científico CIOH. N°23.spa
dc.relation.referencesAgrawal, J.D. y Deo, M.C., 2002. On­line wave prediction. Marine Structures, 15:pp. 57­74.spa
dc.relation.referencesAlexey, V. F. y Kendall, M.W., 1998. Nonlinear gravity capillary waves with forcing and dissipation. J. Fluid Mech., 354: pp.1­42.spa
dc.relation.referencesAlves, J.H.G.M. y Banner, M.L., 2003. Performance of a saturationbased dissipation­rate source term in modelling the fetch­limited evolution of wind waves, J. Phys. Oceanogr., 33, pp.1274­1298.spa
dc.relation.referencesAl’Zanaidi, M.A. y Hui, H. W., 1984. Turbulent air flow over water waves­A numerical study. J. Fluid Mech., 48, pp.225­246.spa
dc.relation.referencesBattjes, J.A. y. Janssen, J.P.F.M., 1978. Energy loss and set­up due to breaking of random wave. Proc. 16th Int. Conf. Coastal Engineering, Hamburg. pp.569­587.spa
dc.relation.referencesBanner, M. L. y Peregrine, D. H., 1993. Wave breaking in deep water. Annu. Rev. Fluid Mech., 25, pp.373­397.spa
dc.relation.referencesBarnett, T. P. y Wilkerson, J. C., 1967. On the generation of ocean wind waves as inferred from airborne radar measurements of fetch­limited spectra. J. Mar. Res., 25, pp.292­321.spa
dc.relation.referencesBarnett, T. P., 1968. On the generation, dissipation and prediction of ocean wind wave. J. Geophys. Res., 73(2):pp.513­529.spa
dc.relation.referencesBelcher, S. E. y Hunt, J. C. R., 1993. Turbulent shear flow over slowly moving waves. J. Fluid Mech., 251, 109­148.spa
dc.relation.referencesBooij, N.y Holthuijsen, L.H., 1987. Propagation of ocean waves in discrete spectral wave models. J. Coput. Physics, 68, pp.307¬326.spa
dc.relation.referencesBooij, N., Ris, R.C. y Holthuijsen, L.H., 1999. A third­ generation wave model for coastal regions, Part I, Model description and validation, J.Geoph.Research, 104, C4, pp.7649­7666.spa
dc.relation.referencesBretschneider, C., 1952. Revised wave forecasting relationships. Proceeding of the 2nd Coastal Enrineering Conference. American Society of Civil Enginneers. 1­5.spa
dc.relation.referencesBretschneider, C., 1958. Revisions in wave forecasting: deep and shallow water. Proceeding of the 6nd Coastal Enrineering Conference. American Society of Civil Enginneers. New York.spa
dc.relation.referencesBouws, E. y Battjes, J.A., 1982. AMonte­Carlo approach to the computation of refraction of water waves, J. Geophys. Res., 87, pp.5718­5722.spa
dc.relation.referencesBouws, E. y Komen, G.J., 1983. On the balance between growth and dissipation in an extreme, depth­limited wind­sea in the southern North Sea, J. Phys. Oceanogr., 13, pp.1653­1658.spa
dc.relation.referencesCavaleri, L. y Rizzoli, P.M., 1981. Wind wave prediction in Shallow water ­ theory and applications. J.Geoph.Res. 8b, CII:pp. 10961­10973.spa
dc.relation.referencesChalikov, D.V. y Belevich, M.Y., 1993. One­dimensional theory of the wave boundary layer. Bound. Layer Meteor., 63, pp.65­96.spa
dc.relation.referencesChalikov, D.V., 1995. The parameterization of the wave boundary layer. J. Phys. Oceanogr., 25, pp.1333­1349.spa
dc.relation.referencesCharnock, H., 1955. Wind stress on water surface. Quart. J. Roy. Meteor.Soc., 81, pp.639­640.spa
dc.relation.referencesChereskin, T. K. y Christensen, M.E., 1985. Modulational development of nonlinear gravity­wave groups. J. Fluid Mech. 151:pp.337­65.spa
dc.relation.referencesCollins, J.I., 1972. Prediction of shallow water spectra, J. Geophys. Res., 77, No. 15, pp.2693­2707.spa
dc.relation.referencesCox, C. S., 1958. Measurements of slopes of high­ frequency wind waves. J. Mar. Res., 16, pp.199­225.spa
dc.relation.referencesCrapper, G.D., 1970. Non­linear capillary waves generated by steep gravity waves, J. Fluid Mech. 40:pp.149­159.spa
dc.relation.referencesDeo, M.C., Jha, A., Chaphekar, A.S. y Ravikant, K., 2001. Neural networks for wave forecasting. Ocean Engng., 28, pp.889­898.spa
dc.relation.referencesDonelan, M. A., Hamilton, J. y Hui, W. H., 1985. Directional spectra of wind­generated waves. Phil. Trans. Roy. Soc.London, A, 315, pp.509­562.spa
dc.relation.referencesDonelan, M.A. y Pierson, W.J., 1987. Radar scattering and equilibrium ranges in wind­generated waves with application to scatterometry, J. Geophys. Res., 92, pp.4971­5029.spa
dc.relation.referencesDommermuth, D.G., 1994. Efficient simulation of short and long­wave interactions with applications to capillary waves. J. Fluids Eng. 116:pp.77­82.spa
dc.relation.referencesEbuchi, N., Kawamura, H. y Toba Y., 1987. Fine structure of laboratory wind­wave surfaces using an optical method. Boundary­Layer Meteorol, 39. pp.133­51.spa
dc.relation.referencesEckart, C., 1953. The generation of wind waves over a water surface. J. Appl.Phys., 24. pp.1485­1494.spa
dc.relation.referencesEldeberky, Y., 1996. Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.spa
dc.relation.referencesEldeberky, Y. y Battjes, J.A., 1996. Spectral modelling of wave breaking: Application to Boussinesq equations, J. Geophys. Res., 101, No. C1, pp. 1253­1264.spa
dc.relation.referencesFox, M. J. H., 1976. On the nonlinear transfer of energy in the peak of a gravity­wave spectrum­II. Proc. Roy. Soc. A, 348, pp. 467­483.spa
dc.relation.referencesGent, P. R. y Taylor, P. A., 1976. A numerical model of the air flow above water waves. J. Fluid Mech., 77, pp. 105­128.spa
dc.relation.referencesGuillaume, A., 1987. VAG: modele de prévision de l’état de la mer en eau profonde. Technical Report 118, Etablissement d’Et udes et Recher ches Météorologiques, N 178.spa
dc.relation.referencesGunther, H., Hasselmann, S. y Janssen, P.A.E.M., 1992. The WAM model Cycle 4 (revised version), Deutsch. Klim.spa
dc.relation.referencesRechenzentrum, Techn. Rep. No. 4, Hamburg, Germany.spa
dc.relation.referencesGIOC. Grupo de Ingeniería oceanográfica y de costas de la Universidad de Cantabria., 2002. Manuales de Referencia. Vol 1. Dinámica.spa
dc.relation.referencesHanson, J. L. y Phillips, O.M., 1999. Wind sea growth and dissipation in the open ocean. J. Phys.Oceanogr, 29, pp. 1633­1648.spa
dc.relation.referencesHasselmann, K., 1962. On the non­linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech., 12, pp. 481­500.spa
dc.relation.referencesHasselmann, K., 1963. On the non­linear energy transfer in a gravity wave spectrum. Part 2. J. Fluid Mech., 15, 273­281; Part 3. 15, pp. 385­398.spa
dc.relation.referencesHasselmann, K., 1963a. On the non­linear transfer in a gravity wave spectrum, part 2. Conservation theory, wave­particle correspondence, irreversibility, J. Fluid Mech., 15, pp. 273­281.spa
dc.relation.referencesHasselmann, K., 1963b. On the non­linear transfer in a gravity wave spectrum, part 3. Evaluation of energy flux and sea­swell interactions for a Neuman spectrum, J. Fluid Mech., 15, pp. 385­398.spa
dc.relation.referencesHass elmann, K., 1966. Feynman diagrams and interaction rules of wave­wave scattering processes. Rev. of Geophys., 4(1):pp.1­32.spa
dc.relation.referencesHasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., et al., 1973. Measurements of wind­wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogh. Z. Suppl., 12, A8.N 12, 95 P.spa
dc.relation.referencesHasselmann, K., Ross, D.B., Muller P. y Sell, W., 1976. A parametric wave prediction model, J. Phys. Oceanogr., 6, pp. 200.228.spa
dc.relation.referencesHasselmann, S. y Hasselmann, K., 1981. A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum. Hamb. Geophys. Einzelschr. Ser. A., Wiss. Abh. 52. 163 P.spa
dc.relation.referencesHasselmann, B. y Hasselmann, K., 1985. Computations and parameterizations of the nonlinear energy transfer in gravity wave spectrum. Part 1. J.Phys. Oceanog., 15, pp.1369­1377.spa
dc.relation.referencesHasselmann, S., Hasselmann, K.J., Allender H. y Barnett, T. P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity­wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15, pp.1378­ 1391.spa
dc.relation.referencesHashimoto, N., Tsuruya, H. y Nakagawa, Y., 1998. Numerical computations of the nonlinear energy transfer of gravity­wave spectra in finite water depths, Coastal Engng. J., 40, pp.23­40.spa
dc.relation.referencesHerterich, K. y Hasselmann, K., 1980. A similarity relation for the nonlinear energy transfer in a finite­ depth gravity­wave spectrum, J. Fluid Mech., 97, pp. 215­224.spa
dc.relation.referencesHsieh, B.B. y Pratt, T.C., 2001. Field data recovery in tidal system using artificial neural networks (ANNs), Coastal and Hydraulic Engineering Technical note CHETN­IV­38, U.S. Army Engineer Research and Development Center, Vicksburg, MS.spa
dc.relation.referencesHsiao, S. V. y Shemdin,O.H., 1983. Measurements of wind velocity and pressure with a wave follower during MARSEN. J. Geophys. Res., 88, C14, pp. 9841­9849.spa
dc.relation.referencesHurdle, D.P. y G. Ph. van Vledder, 2004. Proc. 23rd Int. Conf. On Off_shore Mech. And Arctic. Eng.spa
dc.relation.referencesIsozaki, I. y Uji, T., 1973. Numerical prediction of ocean wind waves. Paper Meteorol. Geophys. 24, pp. 207­231.spa
dc.relation.referencesJahne, B. y Riemer, K.S., 1990. Two­dimensional wavenumber spectra of small­scale water surface waves. J. Geophys. Res, 95, pp. 11 431­11 546. Janssen, P.A.E.M., 1989. Wave­induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19: pp. 745­754.spa
dc.relation.referencesJanssen, P.A.E.M., 1991a. Quasi­linear theory of wind­ wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, pp. 1631­1642.spa
dc.relation.referencesJanssen, P.A.E.M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow, Int. Union of Theor. And Appl. Mech. (IUTAM), Sydney, Australia, pp. 193­198.spa
dc.relation.referencesJeffreys, H., 1924. On the formation of waves by wind. Proc.Roy. Soc. A, 107, pp. 189­206.spa
dc.relation.referencesJeffreys, H., 1925. On the formation of waves by wind, II. Proc. Roy. Soc. A, 110, pp. 341­347.spa
dc.relation.referencesJillians, W. J., 1989. The superharmonic instability of Stokes waves in deep water. J. Fluid Mech. 284: pp. 563­79.spa
dc.relation.referencesJonsson, I.G., 1966. Wave boundary layers and friction factors, Proc. 10th Int. Conf. Coastal Engineering, ASCE, pp. 127­148.spa
dc.relation.referencesJonsson, I.G. y Carlsen, N.A., 1976. Experimental and theoretical investigations in an oscillatory turbulent boundary layer, J. Hydraulic Research, 14, pp. 45­60.spa
dc.relation.referencesJonsson, I.G., 1980. A new approach to rough turbulent boundary layers, Ocean Engineering, 7, pp. 109­152.spa
dc.relation.referencesKambua, W., Supharatid, S. y Tang, I.M., 2005. Ocean wave forecasting in the gulf of Thailand during typhoon Linda 1997: WAM and Neural Network approaches. ScienceAsia., 31, pp. 243­250.spa
dc.relation.referencesKawai, S., 1979. Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech., 93, pp. 661­703.spa
dc.relation.referencesKelvin, Lord W., 1871. The influence of wind on waves in water supposed frictionless. Philos. Mag., 42: pp. 368­374.spa
dc.relation.referencesKlinke, J. y Jahne, B., 1995. Measurements of short ocean waves during the MBL ARI West Coast experiment,” in Air­Water Gas Trans­ fer ­ Selected papers from the Third Interna­ tional Symposium on Air­Water Gas Transfer (B. J. Monahan, ed.), pp. 165­173.spa
dc.relation.referencesKunishi, H., 1963. An experimental study on the generation and growth of wind waves. Bulletin of Disaster Prevention Research Institute, Kyoto Univ., No. 61, pp. 1­41.spa
dc.relation.referencesKomatsu K., Masuda A., 1996. A new scheme of nonlinear energy transfer amoung the wind waves:RIAM method ­ Algorithm and performance, J. of Oceanography, 52, pp. 509­537.spa
dc.relation.referencesKomen, G.J., Hasselmann, S. y Hasselmann, K., 1984. On the existenceof a fully developed wind­sea spectrum, J. Phys. Oceanogr., 14, pp. 1271­1285.spa
dc.relation.referencesLavrenov, I.V., 1991. Nonlinear interaction of waves rips, Izu. USRR AS J.fizika atmosfery i okeana, 27, N 4, pp. 438­447.spa
dc.relation.referencesLavrenov, I.V., 2001. Efect of wind wave parameter fluctuation on the nonlinear spectrum evolution. J. Phys. Oceanogr., 31:861­873, 2001.spa
dc.relation.referencesLeBlond, P.H. y Mysak, L.A., 1978. Waves in the Ocean.Elsevier, Amsterdam, The Netherlands, 602 p.spa
dc.relation.referencesLighthill, M. J., 1962. Physical interpretation of mathematical theory of wave generation by wind. J. Fluid Mech., 14, pp. 385­398.spa
dc.relation.referencesLiu, A. K., P. W. Vachon, y C. y. Peng. 1991. Observation of wave refraction at an ice edge by synthetic aperture radar, J. Geophys. Res., 96(C3), pp. 4803­4808.spa
dc.relation.referencesLizano, R., 2001. Evaluación de modelos numéricos de tercera generación para el pronóstico de oleaje en Centroamérica y México. Top. Meteor. Oceanog., 8(1), pp. 40­29.spa
dc.relation.referencesLizano, R., 2003. Técnicas de pronóstico de oleaje para las costas de Costa Rica. Centro de Investigaciones Geofísicas (CIGEFI) Universidad de Costa Rica.spa
dc.relation.referencesLock, R. C., 1954. Hydrodynamic stability of the flow in the laminar boundary layer between parallel streams. Proc.Camb. Phil. Soc., 50, pp. 105­124.spa
dc.relation.referencesLonin, S., Lonina, I. y Tuchkovenko, Y.S., 1996. Utilización del modelo Nedwam para el cálculo y pronóstico del oleaje en el Mar Caribe Boletín Científico CIOH No. 17, ISSN 0120­0542, Cartagena de Indias, Colombia, pp. 37­45.spa
dc.relation.referencesLonguet­Higgins, M. S., Cartwright , D. E. y Smith, N. D., 1963. Observations of the directional spectrum of sea waves using the motion of a floating buoy. In Ocean Wave Spectra, Englewood Cliffs, N.J., Prentice­Hall. pp. 111­136.spa
dc.relation.referencesLonguet­Higgins, M.S., 1976. On the nonlinear transfer of energy in the peak of a gravity­wave spectrum: A simplified model. Proc. Roy. Soc. Lond. A, 347, pp.311­ 328.spa
dc.relation.referencesLonguet ­ Higgins MS., 1995. Parasitic capillary waves: a direct calculation. J. Fluid Mech 301, pp. 79­107.spa
dc.relation.referencesLUO, W., 1995. Wind wave modeling in shallow water with application to the Southern North Sea. Katholieke Universiteit Leuven. Belgica. 198 P.spa
dc.relation.referencesMadsen, O.S., Poon, Y.K. y Graber, H.C., 1988. Spectral wave attenuation by bottom friction: Theory, Proc. 21th Int. Conf. Coastal Engineering, ASCE, pp.492­ 504.spa
dc.relation.referencesMase, H., Sakamoto, M. y Sakai, T., 1995. Neural network for stability analysis of rubble­mound breakwaters. J. Waterway, Port, Coastal and Ocean Engng., ASCE, 121 (6), pp. 294­299.spa
dc.relation.referencesMakin, V. K. y Kudryavtsev, V. N., 1999. Coupled sea surfaceatmosphere model, Pt.1 Wind over waves coupling, J. Geophys. Res., 104, pp. 7613­7623.spa
dc.relation.referencesMassel, S.R., 1996. Ocean Surface Waves: Their physics and prediction. Advanced series on Ocean Engineering ­Volume 11.World Scientic. 494p.spa
dc.relation.referencesMasuda, A., 1980. Nonlinear energy transfer between wind waves. J. Phys. Oceanogr., 10, pp. 2082­2093.spa
dc.relation.referencesMcGoldrick, M. F., Phillips, O. M., Huang, N. y Hodgson, T., 1966. Measurement of resonant wave interactions. J. Fluid Mech., 25, pp. 437­456.spa
dc.relation.referencesMelville, W. K., 1983. Wave modulation and breakdown. J. Fluid Mech. 128, pp. 489­506.spa
dc.relation.referencesMelville, W. K., Loewen, M. R., Felizardo, F. C., Jessup, A. T. y Buckingham, M. J., 1988. Acoustic and microwave signature of breaking waves. Nature 336, pp. 54­59.spa
dc.relation.referencesMelville, W. K., 1996. The roll of surface­wave breaking in air­sea interaction. Annu. Rev. Fluid Mech., 28, pp. 279­321.spa
dc.relation.referencesMiles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech. 3(2) pp. 185­204.spa
dc.relation.referencesMiles, J. W., 1960. On the generation of surface waves by turbulent shear flow. J. Fluid Mech., 7, pp. 469­478.spa
dc.relation.referencesMiles, J. W., 1993. Surface wave generation revisited. J. Fluid Mech., 256, pp. 427­441.spa
dc.relation.referencesMitsuyasu, H., 1968a. A note on the nonlinear energy transfer in the spectrum of wind­generated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ., 16, pp. 251­264.spa
dc.relation.referencesMitsuyasu, H. y Rikiishi, K., 1978. The growth of durationlimited wind waves. J. Fluid Mech., 85(4), 705­ 730.spa
dc.relation.referencesMitsuyasu, H. and Honda, T. (1982): Wind­induced growth of water waves. J. Fluid Mech., 123, pp. 425­ 442.spa
dc.relation.referencesMotzfeld, H., 1937. Die turbulente Strömung an welligen Wänden. Z. angew. Math. Mech., 17, pp. 193­212.spa
dc.relation.referencesMui, R.C.Y. y Dommermuth, DG. 1995. The vertical structure of parasitic capillary waves. J. Fluids Eng. 117, pp. 355­61.spa
dc.relation.referencesNeumann, G., 1953. On ocean wave spectra and a new method of forecasting Wind­Generated Sea. Beach Erosion Board, Corps of engineers,Tech. Memo., No. 43. 42 P.spa
dc.relation.referencesNordheim, L.W., 1928. On the kinetic method in the new statistics and its application in the electron theory of conductivity, Proc. R. Soc., A 119, pp. 689­699.spa
dc.relation.referencesPadilla, H., Osuna, R.P., Monbaliu, J. y. Holthuijsen, L. 1998. Intercomparing third­generation wave model nesting, 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27­30, Melbourne, Florida, pp. 102­112.spa
dc.relation.referencesPerlin, M., Lin, H. y Ting, C.L., 1993. On parasitic capillary waves generated by steep gravity waves: an experimental investigation with spatial and temporal measurements. J. Fluid Mech. 255, pp. 597­620.spa
dc.relation.referencesPhillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mechanics. 2 (5): pp. 417­445.spa
dc.relation.referencesPhillips, O. M., 1958. The equilibrium range in the spectrum of wind­generated waves. J. Fluid Mech., 4(4), pp. 426­434.spa
dc.relation.referencesPierls, R., 1981. Quantum theory of Solids, Clarendon Press, Oxford.spa
dc.relation.referencesPierson, W.J., 1952. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves, parts I and II. Technical report, New York University, College of Engineering, Res. Div Dept; of Meteorol. and Oceanogr. Prepared for the Beach Erosion Board, Dept. of the Army, and Ocean of Naval Res., Dept. of the Navy, 461.spa
dc.relation.referencesPierson, W.J. y Marks W., 1952. The power spectrum analysis of ocean wave records. Tra s. Amer. Geophys. Union. 33, pp.834­844.spa
dc.relation.referencesPierson, W. J., 1953. A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves, Parts I and II, N.Y.U., Coll. of Eng., Res. Div., Dept. Meteorol. And Oceanogr., 461 P.spa
dc.relation.referencesPierson, W.J. y Moskowitz,L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69(24), pp. 5,181­ 5,190.spa
dc.relation.referencesPierson, W., Tick, L. y Baer, L., 1966. Computer­based rocedures for predicting global wave forecasts and wind field analyses capable of using wave data obtained by space craft. Proc. Nav. Hydrodyn.Symp., 6th, pp. 499­529.spa
dc.relation.referencesPlant, W. J., 1982. A relationship between wind stress and wave slope. J. Geophys. Res., 87, pp. 1961­1967.spa
dc.relation.referencesPolnikov, V.G., 1989. Calculation of nonlinear energy transfer by surface gravitacional waves spectrum, Izu.USSR AS L. fiziku atmosfery i okeana, 25, pp. 1214­1225.spa
dc.relation.referencesPolnikov, V. G., 1991. A third generation spectral model for wind waves, Izvestiya, Atm. and Ocean. Phys. 27, N8, (English transl.), pp. 615­623.spa
dc.relation.referencesPolnikov, V.G., 1996. Nonlinear Energy Transfer through the spectrum of gravity waves for the Finite Depth Case, J. Physical oceanography. J., 27, pp. 1482­1491.spa
dc.relation.referencesPolnikov, V.G., Volkov, Y.A. y Pogarskii, F.A., 2002. Wind wave model with a dynamic boundary layer. Nonlinear Processes in Geophysics 9, pp. 367­371.spa
dc.relation.referencesPolkinov. V.G., 2003. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves. Nonlinear Processes in Geophysics 10: pp. 425­434.spa
dc.relation.referencesPushkarev, A., Resio, D. y Zakharov, V., 2004. Second generation diffusion model of interacting gravity waves on the surface of deep fluid. Nonlinear Processes in Geophysics 11, pp.329­342.spa
dc.relation.referencesRepko, A., Van Gelder, P.H.A.J.M.,Voortman H.G. y Vrijling, J.K., 2001. Bivariate statistical analysis of wave climat es, Proceedings of International Conference on Coastal Engineering.spa
dc.relation.referencesResio, D.T., 1981. The estimation of a wind wave spectrum in a discrete spectral model. J. Phys., 11, pp. 510 ­525.spa
dc.relation.referencesResio, D. y Perrie, W., 1991. A numerical study of nonlinear energy fluxes due to wave­wave interactions. Part I: Methodology and basic results, J. Fluid Mech., 223, pp. 609­629.spa
dc.relation.referencesResio, D.T., Pihl, J.H., Tracy, B.A. y Vincent, C.L., 2001. Nonlinear energyfluxes andthefinitedepthequilibriumrange wave spectra, J. Geophys. Res., 106, C4, pp. 6985­7000.spa
dc.relation.referencesRis, R.C., 1997. Communications on hydraulic and geotechnical engineering. Report No. 97­4. Faculty of Civil Engineering. Delf University of Technology. 160 P.spa
dc.relation.referencesRoske, F., 1997.Sea level forecasts using neural networks. German J. of Hydrography, 49 (1), pp.71­99.spa
dc.relation.referencesRuvinsky, K.D., Feldstein, F.I. y Freidman, G.I., 1991. Numerical simulations of the quasistationary stage of ripple excitation by steep gravity­capillary waves. J. Fluid Mech. 230; pp. 339­53.spa
dc.relation.referencesShemdin, O. H. y Hsu, E. Y., 1967. The dynamics of wind in the vicinity of progressive water waves. J. Fluid Mech., 30, pp. 403­416.spa
dc.relation.referencesSnyder, R. L. y Cox, C. S., 1966. A field study of the wind generation of ocean waves. J. Mar. Res., 24, pp. 141­178.spa
dc.relation.referencesSnyder, R. L., Dobson, F. W., Elliott, J. A. y Long, R.B., 1981. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, pp. 1­59.spa
dc.relation.referencesStanton, T. E., Marshal, D. y Houghton, R., 1932. The growth of waves on water due to the action of the wind. Proc. Roy.Soc. A, 137, pp. 283­293.spa
dc.relation.referencesSteward, R. , 2005. Introduction to Phys ical Oceanography. Department of Oceanography Texas A & M University. 279 P.spa
dc.relation.referencesStokes G.G. (1847). On the theory of oscillatory waves. Camb. Trans. 8; pp.441­473.spa
dc.relation.referencesSu, M.­Y., Bergin, M., Marlev, P. y Myrick, R.,1982. Experiments on nonlinear instabilities and evolution of steep gravitywave trains. J. Fluid Mech. 124; pp.45­72.spa
dc.relation.referencesSuzuki, Y. y Isozaki, I., 1994. On the development of a global ocean wave model JWA3G. Proc. Pacific Ocean Remote Sensing Conf. in Melbourne, Australia, 195­201.spa
dc.relation.referencesSuzuki, T., 1995. In First Edoardo Amaldi Conference on Gravitational Wave Experiments, edited by E. Coccia, G. Pizzella and F. Ronga (World Scientific, Singapore) 115 P.spa
dc.relation.referencesSverdrup, H. y Munk, W., 1947. Wind, sea and swell: theory of relation for forecasting. H. O. Publication 601. U. S. Naval Oceanographic Office. Washington, D. C.spa
dc.relation.referencesSWAN, 2006. Technical Documentation. Cycle III version 40.51.Delft University of Technology Faculty of Civil Engineering and Geosciences. Netherlands. pp. 12­33.spa
dc.relation.referencesTejada, C., M. Gonzáles y L. Otero. (2004). Desarrollo de un módulo informático para el manejo de datos de oleaje visual para aguas jurisdiccionales colombianas. XXI Congreso Latinoamericano de Hidráulica. Sao Pedro, estado Sao Paulo, Brasil. 11 P.spa
dc.relation.referencesThirumalaiah, K., y M.C. Deo, 1998: River stage forecasting using artificial neural networks. J.Hydrologic Engng., ASCE, 3 (1), pp.26­32.spa
dc.relation.referencesTsai, C.P. y Lee, T.L., 1999. Back­propagation neural network in tidal­level forecasting. J. Waterway, Port, Coastal and Ocean Engineering., ASCE, 125 (4), pp.195­202.spa
dc.relation.referencesToba, Y., 1988. Similarity laws of the wind wave and the coupling process of the air and water turbulent boundary layers. Fluid Dyn. Res., 2, pp.263­279.spa
dc.relation.referencesTolman, H. L., 1989. The numerical model WAVEWATCH: a third generation model for hindcasting of wind waves on tides in shelf seas. Technical Report 89­2, Faculty of Civil engineering, Delft University of Technology, ISSN 0169­6548.spa
dc.relation.referencesTolman, H. L., 1991. A third generation model for wind waves on slowly var ying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, pp. 782­797.spa
dc.relation.referencesTolman, H. L., 1992. Effects of numerics on the physics in a third­generation wind­wave model. J. Phys. Oceanogr., 22, pp. 1095­1111.spa
dc.relation.referencesTolman, H.J., 1992a. Effects of numerics on the physics in a third generation wind­wave model, J. Phys. Oceanogr., 22, 10, pp.1095­1111.spa
dc.relation.referencesTolman, H.L. y.Chalikov, D.V., 1996. Source terms in a thir d ­ generation wind­wave model. J.P hys. Oceanogr., 26, pp. 2497­2518.spa
dc.relation.referencesTolman, H. L., 2002. User Manual and system documentation of WAVEWATCH­III. Version 2.22. Tech. Note 222, NOAA/NWS/NCEP/OMB,133P.spa
dc.relation.referencesTolman, H. L., 2002b. Validation of WAVEWATCH III version 1.15 for a global domain. NOAA / NWS / NCEP / OMB Technical Note Nr. 213, 33 P.spa
dc.relation.referencesTolman, H. L., 2002c. Validation of WAVEWATCH­III Version 1.15 for global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB,P.spa
dc.relation.referencesTownsend, A. A., 1972. Flow in a deep turbulent boundary layer over a surface distorted by water waves. J. Fluid Mech., 55, pp. 719­735.spa
dc.relation.referencesTracy, B. y Resio, D.T. 1982. Theory and calculation of the nonlinear energy transfer between sea waves in deep water. WES Report 11, US Army Corps of Engineers.spa
dc.relation.referencesUeno, K. y Ishizaka M., 1997. Efficient computationalscheme of nonlinear energy transfer of wind waves. SokkoJihou, 64, pp.75­80.spa
dc.relation.referencesUeno, K., 1998. On the energy dissipation term of wave models. Sokkou­Jihou, 65, pp.S181­S187.spa
dc.relation.referencesUeno, K. y Kohno, N., 2004. The development of the third generation wave model MRI­III for operational use. In: The 8th International Workshop on Wave Hindcasting Oahu, Hawaii. November.spa
dc.relation.referencesUrsell, F., 1956. Wave generation by wind. In Surveys in Mechanics, ed. by G. K. Batchelor, Cambridge University Press. pp. 216­249.spa
dc.relation.referencesValenzuela, G., 1976. The growth of gravity capillary waves in a coupled shear flow, J. Fluid Mech., 76, pp. 229­250.spa
dc.relation.referencesVaziri, M., 1997. Prediction of Caspian sea surface water level by ANN and ARIMA models, J. Wtrwy., Port, Coast., and Oc. Engrg., ASCE, 123(4) 4), pp. 158­62.spa
dc.relation.referencesWaseda, T,. Toba, Y, y Tulin, M.P., 2001. Adjustment of wind waves to sudden shanges of wind speed. Journal of Oceanography, Vol. 57, pp. 519 ­ 533.spa
dc.relation.referencesWAMDI Group (13 authors) 1988. The WAM model. A third genereation ocean wave prediction model. J. Phys.Oceanogr., 18, pp.1775­1810.spa
dc.relation.referencesWang, C., Wang, Z., Jin, J. y Peng, Q., 2003. Real­time Simulation of Ocean Wave Based on Cellular Automata.CAD/Graphics 2003.spa
dc.relation.referencesWebb, D.J., 1978. Non­linear transfers between sea waves, Deep­Sea Res., 25, pp. 279­298.spa
dc.relation.referencesWetzel, L.B., 1993. A time domain model for sea scatter. Radio Sci, 28, pp.139­150.spa
dc.relation.referencesWheless, G. H. y Csandy, G. T., 1993. Instability waves on the air­sea interface. J. Fluid Mech., 248, pp. 363­381.spa
dc.relation.referencesWilson, B. W., 1965. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deut. Hydrogr. Z., 18, pp. 114­130.spa
dc.relation.referencesWinebrenner D.P. y Hasselmann, K., 1988. Specular point scattering contribution to the mean synthetic aperture radar image of the ocean surface. J. Geophys. Res, 93, pp. 9281­9294.spa
dc.relation.referencesWu, J., 1982. Wind ­ stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, pp. 9704­9706.spa
dc.relation.referencesWues t, W., 1949. Beitrag zur Ent stehung von Wasserwellen durch Wind. Z. Angew. Math. Mech., 29, pp. 239­252.spa
dc.relation.referencesZakharov, V. E., 1966. Some aspects of nonlinear theory of surface waves (in Russian), PhD Thesis, Budker Institute for uclear Physics for Nuclear Physics, Novosibirsk, USSR.spa
dc.relation.referencesZakharov, V.E. y Filonenko, N.N., 1966. Energy spectrum of stochastic oscillation in fluid surface Doklady Acad. Nauk SSSR, 170, N6, pp. 1292­1295.spa
dc.relation.referencesZakharov, V.Y. y Zaslavskii, M.M., 1982. Kinetic equation and Kolmogorov’s spectra in in week turbulent theory of wind waves, Proc.Acad.Sc.USSR, Atmosphere and Ocean Physics, Vol.18, 9, pp. 970 ­ 980.spa
dc.relation.referencesZakharov, V. E. y Pushkarev, A., 1999. Diffusion Model of Interacting Gravity Waves on the Surface of Deep Fluid, Nonlin. Proc. Geophys., 6, pp. 1­10.spa
dc.relation.referencesZhang, X., 1995. Capillary­gravity and capillary waves generated in a wind­wave tank: observations and theories. J. Fluid Mech. 289, pp.51­8.spa
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem