dc.creator | Acelas, Nancy Y. | spa |
dc.creator | López, Diana | spa |
dc.creator | Mondragón, Fanor | spa |
dc.creator | Tiznado, William | spa |
dc.creator | Flórez, Elizabeth | spa |
dc.date.accessioned | 2017-06-15T22:05:22Z | |
dc.date.available | 2017-06-15T22:05:22Z | |
dc.date.created | 2013 | |
dc.identifier.citation | Acelas, N. Y., López, D., Mondragón, F., Tiznado, W., & Flórez, E. (2013). Topological analysis of tetraphosphorus oxides (P4O6+ n (n= 0–4)). Journal of molecular modeling, 19(5), 2057-2067. | spa |
dc.identifier.issn | 16102940 | |
dc.identifier.uri | http://hdl.handle.net/11407/3460 | |
dc.description | Quantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n = 0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui function. A classification of the P-O bonds formed in all structures was done according to the coordination number in each P and O atoms. It was found that there are five P-O bond types and these are distributed among the five phosphorus oxides structures. Results showed that there is good agreement among the evaluated properties (length, bond order, density at the critical point, and disynaptic population) and each P-O bond type. It was found that regardless of the structure in which a P-O bond type is present the topological and geometric properties do not have a significant variation. The topological parameters electron density and Laplacian of electron density show excellent linear correlation with the average length of P-O bond in each bond type for each structure. From the Fukui function analysis it was possible to predict that from P4O6 until P4O8 the most reactive regions are basins over the P. | spa |
dc.language.iso | eng | |
dc.publisher | Springer Berlin Heidelberg | spa |
dc.relation.isversionof | https://link.springer.com/article/10.1007/s00894-012-1633-7 | spa |
dc.source | Journal of Molecular Modeling | spa |
dc.subject | Atoms in molecules | spa |
dc.subject | DFT | spa |
dc.subject | The Fukui function | spa |
dc.subject | Topological analysis | spa |
dc.title | Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4)) | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Tronco común Ingenierías | spa |
dc.identifier.doi | DOI: 10.1007/s00894-012-1633-7 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.creator.affiliation | Acelas, Nancy Y.; Universidad de Antioquia | spa |
dc.creator.affiliation | López, Diana; Universidad de Antioquia | spa |
dc.creator.affiliation | Mondragón, Fanor; Universidad de Antioquia | spa |
dc.creator.affiliation | Tiznado, William; Universidad Andres Bello | spa |
dc.creator.affiliation | Flórez, Elizabeth; Universidad de Medellín | spa |
dc.relation.ispartofes | Journal of Molecular Modeling. May 2013, Volume 19, Issue 5, pp 2057–2067 | spa |
dc.relation.references | Salvadó MA, Pertierra P (2008) Theoretical study of P2O5 polymorphs at high pressure: hexacoordinated phosphorus. Inorg Chem 47(11):4884–4890 | spa |
dc.relation.references | Engels B, Soares Valentim AR, Peyerimhoff SD (2001) About the chemistry of phosphorus suboxides. Angew Chem Int Ed 40(2):378–381 | spa |
dc.relation.references | Dimitrov A, Ziemer B, Hunnius W-D, Meisel M (2003) The first ozonide of a phosphorus oxide—preparation, characterization, and structure of P4O18. Angew Chem Int Ed 42(22):2484–2486 | spa |
dc.relation.references | Klapötke TM (2003) P4O18—the first binary phosphorus oxide ozonide. Angew Chem Int Ed 42(30):3461–3462 | spa |
dc.relation.references | Carbonnière P, Pouchan C (2008) Vibrational spectra for P4O6 and P4O10 systems: theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem Phys Lett 462(4–6):169–172 | spa |
dc.relation.references | Mielke Z, Andrews L (1989) Infrared spectra of phosphorus oxides (P4O6, P4O7, P4O8, P4O9 and P4O10) in solid argon. J Phys Chem 93(8):2971–2976 | spa |
dc.relation.references | Jansen M, Moebs M (1984) Structural investigations on solid tetraphosphorus hexaoxide. Inorg Chem 23(26):4486–4488 | spa |
dc.relation.references | Beattie IR, Ogden JS, Price DD (1978) The characterization of molecular vanadium oxide (V4O10), an analog of phosphorus oxide (P4O10). Inorg Chem 17(11):3296–3297 | spa |
dc.relation.references | Sharma BD (1987) Phosphorus(V) oxides. Inorg Chem 26(3):454–455 | spa |
dc.relation.references | Valentim ARS, Engels B, Peyerimhoff SD, Clade J, Jansen M (1998) A comparative study of the bonding character in the P4On (n = 6–10) series by means of a vibrational analysis. J Phys Chem A 102(21):3690–3696 | spa |
dc.relation.references | Mowrey RC, Williams BA, Douglass CH (1997) Vibrational analysis of P4O6 and P4O10. J Phys Chem A 101(32):5748–5752 | spa |
dc.relation.references | Lohr LL (1990) An ab initio characterization of the gaseous diphosphorus oxides P2Ox (x = 1–5). J Phys Chem 94(5):1807–1811 | spa |
dc.relation.references | Moussaoui Y, Ouamerali O, De Maré GR (2003) Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: comparison of theoretical and experimental data. Int Rev Phys Chem 22(4):641–675 | spa |
dc.relation.references | Butler JE, Kawaguchi K, Hirota E (1983) Infrared diode laser spectroscopy of the PO radical. J Mol Spectrosc 101(1):161–166 | spa |
dc.relation.references | Kanata H, Yamamoto S, Saito S (1988) The dipole moment of the PO radical determined by microwave spectroscopy. J Mol Spectrosc 131(1):89–95 | spa |
dc.relation.references | Dyke JM, Morris A, Ridha A (1982) Study of the ground state of PO + using photoelectron spectroscopy. J Chem Soc, Faraday Trans 78(12):2077–2082 | spa |
dc.relation.references | Zittel PF, Lineberger WC (1976) Laser photoelectron spectrometry of PO-, PH-, and PH2-. J Chem Phys 65(4):1236–1243 | spa |
dc.relation.references | Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod Package | spa |
dc.relation.references | Flkiger P, Lthi HP, Portmann S, Weber J (2008) MOLEKEL 5.3. Molekel homepage. http://www.cscs.ch/molekel (accessed 20 April 2010) | spa |
dc.relation.references | Bader R (1990) Atoms in molecules. Oxford University Press, New York, A Quantum | spa |
dc.relation.references | Popelier PLA (1996) MORPHY, a program for an automated "atoms in molecules" analysis. Comput Phys Commun 93:212–240 | spa |
dc.relation.references | Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873 | spa |
dc.relation.references | Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154 | spa |
dc.relation.references | Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534 | spa |
dc.relation.references | Gazquez J (2008) Perspectives on density functional theory Of chemical reactivity. J Mex Chem Soc 52(1):3–10 | spa |
dc.relation.references | Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863 | spa |
dc.relation.references | Ayers PW, Levy M (2000) Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360 | spa |
dc.relation.references | Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694 | spa |
dc.relation.references | Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175 | spa |
dc.relation.references | Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018 | spa |
dc.relation.references | Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303 | spa |
dc.relation.references | Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050 | spa |
dc.relation.references | Fuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quantum Chem 107:37–45 | spa |
dc.relation.references | Ayers PW (2006) Can one oxidize an atom by reducing the molecule that contains It? Phys Chem Chem Phys 8:3387–3390 | spa |
dc.relation.references | Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–1151 | spa |
dc.relation.references | Melin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019 | spa |
dc.relation.references | Cardenas C, Ayers PW, Cedillo A (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134(17):174103–174113 | spa |
dc.relation.references | Flores-Moreno R (2009) Symmetry conservation in Fukui functions. J Chem Theory Comput 6(1):48–54 | spa |
dc.relation.references | Martínez J (2009) Local reactivity descriptors from degenerate frontier molecular orbitals. Chem Phys Lett 478(4–6):310–322 | spa |
dc.relation.references | Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109(14):3220–3224 | spa |
dc.relation.references | Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6(5):1470–1478 | spa |
dc.relation.references | Osorio E, Ferraro MB, Oña OB, Cardenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum matching of the Fukui functions. J Chem Theory Comput 7(12):3995–4001 | spa |
dc.relation.references | Florez E, Tiznado W, Mondragón F, Fuentealba P (2005) Theoretical study of the interaction of molecular oxygen with copper clusters. J Phys Chem A 109(34):7815–7821 | spa |
dc.relation.references | Tiznado W, Ona OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) Theoretical study of the adsorption of H on Sin clusters, (n = 3–10). J Chem Phys 123(21):214302 | spa |
dc.relation.references | Tiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) Theoretical study of the structure and electronic properties of Si3On − and Si6On − (n = 1–6) clusters. Fragmentation and formation patterns. J Chem Theory Comput 5(9):2265–2273 | spa |
dc.relation.references | Kohout M (2011) DGrid 4.6. Radebeul | spa |
dc.relation.references | Popelier PLA (2000) Atoms in molecules. An introduction. Pearson Education, Harlow | spa |
dc.identifier.eissn | 09485023 | |
dc.type.driver | info:eu-repo/semantics/article | |