REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • General
  • View Item
  •   Home
  • Artículos
  • General
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming

Thumbnail
View/Open
Articulo_.html (Ver PDF en página del publicador) (545bytes)
Share this
Date
2015
Author
Díaz-García, José A.
Caro-Lopera, Francisco J.
Díaz-García, José A.; Universidad Autónoma Agraria Antonio Narro
Caro-Lopera, Francisco J.; Universidad de Medellín
TY - GEN T1 - Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming AU - Díaz-García, José A. AU - Caro-Lopera, Francisco J. Y1 - 2015 UR - http://hdl.handle.net/11407/3471 PB - Faculty of Social Sciences, University of Ljubljana AB - An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods. ER - @misc{11407_3471, author = {Díaz-García José A. and Caro-Lopera Francisco J.}, title = {Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming}, year = {2015}, abstract = {An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.}, url = {http://hdl.handle.net/11407/3471} }RT Generic T1 Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming A1 Díaz-García, José A. A1 Caro-Lopera, Francisco J. YR 2015 LK http://hdl.handle.net/11407/3471 PB Faculty of Social Sciences, University of Ljubljana AB An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.
URI
http://hdl.handle.net/11407/3471
Collections
  • General [206]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com