Show simple item record

dc.creatorDíaz-García, José A.spa
dc.creatorCaro-Lopera, Francisco J.spa
dc.date.accessioned2017-06-15T22:05:23Z
dc.date.available2017-06-15T22:05:23Z
dc.date.created2015spa
dc.identifier.citationDíaz-García, J. A., & Caro-Lopera, F. J. (2015). Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming. Metodoloski Zvezki, 12(1), 11-24spa
dc.identifier.issn18540023spa
dc.identifier.urihttp://hdl.handle.net/11407/3471
dc.descriptionAn explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.spa
dc.language.isoengspa
dc.publisherFaculty of Social Sciences, University of Ljubljanaspa
dc.relation.isversionofhttp://www.stat-d.si/mz/mz12.12/Diaz2015.pdfspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.sourceMetodoloski Zvezkispa
dc.subjectAsymptotic normalityspa
dc.subjectMultiresponse surface optimisationspa
dc.subjectSensitivity analysisspa
dc.subjectMathematical programmingspa
dc.titleAsymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programmingspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.typeArticlespa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.programTronco común Ingenieríasspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.identifier.e-issn18540031spa
dc.source.bibliographicCitationAitchison, J. and S. D. Silvey, S. D. (1958): Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 29, 813–828.spa
dc.source.bibliographicCitationBiles, W. E. (1975): A response surface method for experimental optimization of multi-response process. Industrial & Engeneering Chemistry Process Design Development, 14, 152-158.spa
dc.source.bibliographicCitationGigelow, J. H. and Shapiro, N. Z. (1974): Implicit function theorem for mathematical programming and for systems of iniqualities. Mathematical Programming, 6(2), 141– 156.spa
dc.source.bibliographicCitationBishop, Y. M. M., Finberg, S. E. and Holland, P. W. (1991): Discrete Multivariate Analysis: Theory and Practice. The MIT press, Cambridge.spa
dc.source.bibliographicCitationChatterjee, S. and Hadi, A. S. (1988): Sensitivity Analysis in Linear Regression. John Wiley: New York.spa
dc.source.bibliographicCitationCramer, H. (1946): ´ Mathematical Methods of Statistics. Princeton University Press, Princeton.spa
dc.source.bibliographicCitationD´ıaz Garc´ıa, J. A. and Ramos-Quiroga, R. (2001): An approach to optimization in response surfaces. Communication in Statatistics, Part A- Theory and Methods, 30, 827–835.spa
dc.source.bibliographicCitationD´ıaz Garc´ıa, J. A. and Ramos-Quiroga, R. (2002): Erratum. An approach to optimization in response surfaces. Communication in Statatistics, Part A- Theory and Methods, 31, 161.spa
dc.source.bibliographicCitationDupacov ˇ a, J. (1984): Stability in stochastic programming with recourse-estimated ´ parameters. Mathematical Programming, 28, 72–83.spa
dc.source.bibliographicCitationFiacco, A. V. and Ghaemi, A. (1982): Sensitivity analysis of a nonlinear structural design problem. Computers & Operations Research, 9(1), 29–55.spa
dc.source.bibliographicCitationJagannathan, R. (1977): Minimax procedure for a class of linear programs under uncertainty. Operations Research, 25, 173–177.spa
dc.source.bibliographicCitationKazemzadeh, R. B., Bashiri, M., Atkinson, A. C. and Noorossana, R. (2008): A General Framework for Multiresponse Optimization Problems Based on Goal Programming. European Journal of Operational Research, 189, 421-429.spa
dc.source.bibliographicCitationKhuri, A. I. and Conlon, M. (1981): Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics, 23, 363–375.spa
dc.source.bibliographicCitationKhuri, A. I. and Cornell, J. A. (1987): Response Surfaces: Designs and Analysis. Marcel Dekker, Inc., NewYork.spa
dc.source.bibliographicCitationMiettinen, K. M. (1999): Non linear multiobjective optimization. Kluwer Academic Publishers, Boston.spa
dc.source.bibliographicCitationMuirhead, R. J. (1982): Aspects of multivariate statistical theory. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., 1982.spa
dc.source.bibliographicCitationMyers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009): Response surface methodology: process and product optimization using designed experiments. Third edition, Wiley, New York, .spa
dc.source.bibliographicCitationRao, C. R. (1973): Linear Statistical Inference and its Applications. (2nd ed.) John Wiley & Sons, New York.spa
dc.source.bibliographicCitationRao, S. S. (1979): Optimization Theory and Applications. Wiley Eastern Limited, New Delhi.spa
dc.source.bibliographicCitationR´ıos, S., R´ıos Insua, S. and R´ıos Insua, M. J. (1989): Procesos de decision Multicri- ´ terio. EUDEMA, Madrid, (in Spanish).spa
dc.source.bibliographicCitationSteuer, R. E. (1986): Multiple criteria optimization: Theory, computation and applications. John Wiley, New York.spa
dc.creator.affiliationDíaz-García, José A.; Universidad Autónoma Agraria Antonio Narrospa
dc.creator.affiliationCaro-Lopera, Francisco J.; Universidad de Medellínspa
dc.relation.ispartofesMetodoloski zvezki, Vol. 12, No. 1, 2015, 11-24spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record