Show simple item record

Spectrum Sensing Framework based on Blind Source Separation for Cognitive Radio Environments

dc.contributor.authorSepúlveda Cano, Lina María
dc.contributor.authorQuiza Montealegre, Jhon Jair
dc.contributor.authorGil Taborda, Camilo
dc.contributor.authorGómez García, Jorge Andrés
dc.description.abstractEl uso eficiente del espectro se ha convertido en un área de investigación activa, debido a la escasez de este recurso y a su subutilización. En un escenario en el que el espectro es un recurso compartido como en la radio cognitiva (CR), los espacios sin uso dentro de las bandas de frecuencias con licencia podrían ser detectados y posteriormente utilizados por un usuario secundario a través de técnicas de detección y sensado del espectro. Generalmente, estas técnicas de detección se utilizan a partir de un conocimiento previo de las características de canal. En el presente trabajo se propone un enfoque de detección ciega del espectro basado en análisis de componentes independientes (ICA) y análisis de espectro singular (SSA). La técnica de detección se valida a través de simulación, y su desempeño se compara con metodologías propuestas por otros autores en la literatura. Los resultados muestran que el sistema propuesto es capaz de detectar la mayoría de las fuentes con bajo consumo de tiempo, un aspecto que cabe resaltar para aplicaciones en línea con exigencias de
dc.description.abstractThe efficient use of spectrum has become an active research area, due to its scarcity and underutilization. In a spectrum sharing scenario as Cognitive Radio (CR), the vacancy of licensed frequency bands could be detected by a secondary user through spectrum sensing techniques. Usually, this sensing approaches are performed with a priori knowledge of the channel features. In the present work, a blind spectrum sensing approach based on Independent Component Analysis and Singular Spectrum Analysis is proposed. The approach is tested and compared with other outcomes. Results show that the proposed scheme is capable of detect most of the sources with low time consumption, which is a remarkable aspect for online applications with demanding time
dc.format.extentp. 129-140spa
dc.publisherUniversidad de Medellínspa
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 15, núm. 29 (2016); 129-140spa
dc.subjectSpectrum sensingspa
dc.subjectBlind source separationspa
dc.subjectCognitive Radiospa
dc.subjectSensado del espectrospa
dc.subjectSeparación ciega de fuentesspa
dc.subjectRadio cognitivaspa
dc.titleMétodo para sensado del espectro basado en separación ciega de fuentes para ambientes de radio cognitivaspa
dc.titleSpectrum Sensing Framework based on Blind Source Separation for Cognitive Radio Environmentsspa
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degreesspa
dc.creator.affiliationSepúlveda Cano, Lina María; Universidad de Medellínspa
dc.creator.affiliationQuiza Montealegre, Jhon Jair; Universidad de Medellínspa
dc.creator.affiliationGil Taborda, Camilo; Universidad de Medellínspa
dc.creator.affiliationGómez García, Jorge Andrés; Universidad Politécnica de Madridspa
dc.relation.referencesM. Sarijari, A. Marwanto, N. Fisal, S. K. S. Yusof, R. Rashid & M. Satria, “Energy detection sensing based on gnu radio and usrp: An analysis study”, in Proceedings of the 2009 IEEE 9th Malaysia International Conference on Communications, Kuala Lumpur, Malaysia, Dec. 15-17, 2009, pp. 338-342. Available:
dc.relation.referencesY. Hassan, M. El-Tarhuni & K. Assaleh, “Learning-based spectrum sensing for cognitive radio systems”, Journal of Computer Networks and Communications, vol. 2012, pp. 1-14, 2012. Available:
dc.relation.referencesA. Mate, K. H. Lee & I. T. Lu, “Spectrum sensing based on time covariance matrix using gnu radio and usrp for cognitive radio”, in: 2011 ieee Long Island Systems, Applications and Technology Conference (lisat), Farmingdale, NY, USA, May 6, 2011, pp.
dc.relation.referencesG. Nautiyal & R. Kumar, “Spectrum sensing in cognitive radio using matlab”, International Journal of Engineering and Advanced Technology (IJEAT), vol. 2, no. 5, pp. 529-532, Jun.
dc.relation.referencesZ. Xuping & P. Jianguo, “Energy-detection based spectrum sensing for cognitive radio”, in iet Conference on Wireless, Mobile and Sensor Networks (ccwmsn07), Shangai, China, Dec. 12-14, 2007, pp.
dc.relation.referencesH. Arslan, Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems (Signals and Communication Technology). New York: Springer-Verlag,
dc.relation.referencesM. Rahman, A. Haniz, S. Khadka, S., Iswandi, Gahadza, M., Kim, M., ichi Takada, J. “Development of spectrum sensing system with gnu radio and usrp to detect emergency radios”, ieice, The Institute of Electronics, Information and Communication Engineers, Sendai, Japan, Technical Report SR2009-57, Oct.
dc.relation.referencesA. Fehske, J. Gaeddert & J. Reed, “A new approach to signal classification using spectral correlation and neural networks”, in DySPAN 2005. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, USA, Nov. 8-11, 2005. pp.
dc.relation.referencesS. Chaudhari, “Spectrum sensing for cognitive radios: Algorithms, performance, and limitations”, Ph. D. thesis, Aalto University, Greater Helsinki, Finland,
dc.relation.referencesS. Da, G. Xiaoying, C. Hsiao-hwa & Q. Liang, “Fast cycle frequency domain feature detection for cognitive radio systems”, Arxiv, p. 4, Ar. 6, 2009. Available:
dc.relation.referencesM. Calabro, “A Cooperative Spectrum Sensing Network with Signal Classification Capabilities”. Ph. D. thesis, Worcester Polytechnic Institute, Worcester, Massachusetts,
dc.relation.referencesA. G. Ferrer, E.G. Prieto & D. Peña, “Exploring ica for time series decomposition”, Working Paper 11-16, Statistics and Econometrics Series 11, May 2011. Available:
dc.relation.referencesL. Molgedey & H. G. Schuster, “Separation of a mixture of independent signals using time delayed correlations”, Physical Review Letters, vol. 72, 3634-3637,
dc.relation.referencesV. Krishnaveni, S. Jayaraman, P. M. Kumar, K. Shivakumar & K. Ramadoss, “Comparison of independent component analysis algorithms for removal of ocular artifacts from electroencephalogram”, Meas. Sci. Rev. J, vol. 5, no. 2, pp. 67-78,
dc.relation.referencesHongli, Sun, Y.: “The study and test of ica algorithms”, in 2005 Proceedings International Conference on Wireless Communications, Networking and Mobile Computing, vol. 1, Wuhan, China, Sept. 23-26, 2005, pp.
dc.relation.referencesT. Kolenda, L. K. Hansen & J. Larsen, “Signal detection using ica: Application to chat room topic spotting”, in 3rd International Conference on Independent Component Analysis and Blind Source Separation, ica’2001, San Diego, USA, Dec. 9-13, 2001, pp. 540-545. Available:
dc.relation.referencesH. G. Ma, Q. B. Jiang, Z. Q. Liu, G. Liu & Z. Y. Ma, “A novel blind source separation method for single-channel signal”, Signal Processing, vol. 90, no. 12, pp. 3232-3241,
dc.relation.referencesS. S. Kalamkar & A. Banerjee, “On the performance of generalized energy detector under noise uncertainty in cognitive radio”, in National Conference on Communications (ncc), Delhi, India, Feb. 15-17, 2013. pp. 1–
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.localArtículo científicospa
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International