Estrategia evolutiva basada en GPU para la detección del disco óptico en imágenes de retina
A GPU-based Evolution Strategy for Optic Disk Detection in Retinal Images
Share this
Date
2016-12-31Author
Sánchez-Torres, Germán
González-Calederón, Guillermo
Citación
Metadata
Show full item recordDocuments PDF
Abstract
La ejecución paralela de aplicaciones usando unidades de procesamiento gráfico (gpu) ha ganado gran interés en la comunidad académica en los años recientes. La computación paralela puede ser aplicada a las estrategias evolutivas para procesar individuos dentro de una población, sin embargo, las estrategias evolutivas se caracterizan por un significativo consumo de recursos computacionales al resolver problemas de gran tamaño o aquellos que se modelan mediante funciones de aptitud complejas. Este artículo describe la implementación de una estrategia evolutiva para la detección del disco óptico en imágenes de retina usando Compute Unified Device Architecture (cuda). Los resultados experimentales muestran que el tiempo de ejecución para la detección del disco óptico logra una aceleración de 5 a 7 veces, comparado con la ejecución secuencial en una cpu convencional. Parallel processing using graphic processing units (GPUs) has attracted much research interest in recent years. Parallel computation can be applied to evolution strategy (ES) for processing individuals in a population, but evolutionary strategies are time consuming to solve large computational problems or complex fitness functions. In this paper we describe the implementation of an improved ES for optic disk detection in retinal images using the Compute Unified Device Architecture (CUDA) environment. In the experimental results we show that the computational time for optic disk detection task has a speedup factor of 5x and 7x compared to an implementation on a mainstream CPU.