Mostrar el registro sencillo del ítem

A systematic mapping of water quality prediction using computational intelligence techniques

dc.contributor.authorLopez, Ivan Dario
dc.contributor.authorFigueroa, Apolinar
dc.contributor.authorCorrales, Juan Carlos
dc.date.accessioned2017-06-29T22:22:37Z
dc.date.available2017-06-29T22:22:37Z
dc.date.created2016-06-30
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/3558
dc.description.abstractDada la naturaleza renovable del agua, este recurso se ha tratado y gestionado tradicionalmente como si fuese ilimitado, sin embargo el incremento indiscriminado de su uso ha acarreado consigo un acelerado deterioro en su calidad; es así como la predicción de la calidad del agua desempeña un papel muy importante para muchos sectores socio-económicos que dependen del uso del preciado líquido. En este estudio se realiza un mapeo sistemático de la literatura concerniente a la predicción de la calidad del agua haciendo uso de técnicas de Inteligencia Computacional, incluyendo aquellas utilizadas para calibrar modelos predictivos en aras de mejorar su precisión. A partir de las preguntas de investigación formuladas en el mapeo sistemático es identificada una brecha orientada a la creación de un mecanismo adaptativo de predicción de calidad del agua que pueda ser aplicado en diferentes usos del agua sin que la precisión de las predicciones se vea afectada.spa
dc.description.abstractDue to the renewable nature of water, this resource has been treated and managed as if it were unlimited; however, increase the indiscriminate use has brought with it a rapid deterioration in quality; so as predicting water quality has a very important role for many socio-economic sectors that depend on the use of the precious liquid. In this study, a systematic literature mapping was performed about water quality prediction using computational intelligence techniques, including those used to calibrate predictive models in order to improve accuracy. Based on research questions formulated in the systematic mapping, a gap is identified oriented to creation of an adaptive mechanism for predicting water quality that can be applied in different water uses without raised the accuracy of the predictions is affected.spa
dc.format.extentp. 35-52spa
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.relation.urihttp://revistas.udem.edu.co/index.php/ingenierias/article/view/1068
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 15, núm. 28 (2016)spa
dc.source2248-4094spa
dc.source1692-3324spa
dc.subjectWater qualityspa
dc.subjectComputational intelligencespa
dc.subjectForecastingspa
dc.subjectComplex adaptive systemsspa
dc.subjectCalidad del aguaspa
dc.subjectInteligencia computacionalspa
dc.subjectPredicciónspa
dc.subjectSistemas adaptativos complejosspa
dc.titleUn mapeo sistemático sobre predicción de calidad del agua mediante técnicas de inteligencia computacionalspa
dc.titleA systematic mapping of water quality prediction using computational intelligence techniquesspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.doi http://dx.doi.org/10.22395/rium.v15n28a2
dc.relation.citationvolume15
dc.relation.citationissue28
dc.relation.citationstartpage35
dc.relation.citationendpage52
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degreesspa
dc.publisher.placeMedellínspa
dc.creator.affiliationLopez, Ivan Dario; Universidad del Caucaspa
dc.creator.affiliationFigueroa, Apolinar; Universidad del caucaspa
dc.creator.affiliationCorrales, Juan Carlos; Universidad del Caucaspa
dc.relation.referencesP. J. and J. S. Claudia Pahl-Wostl y C., Paul Jeffrey, and Jan Sendzimir. Pahl-Wostl, Adaptive and integrated management of water resources. publisherNameCambridge University Press, 2011.spa
dc.relation.referencesConsejo Económico y Social de Castilla-Mancha, “Estudio La gestión del Agua en Castilla-La Mancha”. 2004.spa
dc.relation.referencesComunidad Autónoma de Extremadura, Agentes Forestales de Extremadura. Legislacion Básica Ebook. MAD-Eduforma, 2003.spa
dc.relation.referencesIDEAM, “Calidad del Agua Superficial en Colombia”, en Estudio Nacional del Agua, 2010, pp. 231-277.spa
dc.relation.referencesN. Rescher, Predicting the Future: An Introduction to the Theory of Forecasting. SUNY Press, 1998.spa
dc.relation.referencesE. Kumar, Artificial Intelligence. I.K. International Publishing House Pvt. Limited, 2008.spa
dc.relation.referencesA. P. Engelbrecht, Computational Intelligence: An Introduction. Wiley, 2007.spa
dc.relation.referencesB. Kitchenham y S. Charters, “Guidelines for performing Systematic Literature Reviews in Software Engineering”, Keele University and Durham University Joint Report, UK, EBSE 2007-001, 2007.spa
dc.relation.referencesK. Petersen, R. Feldt, S. Mujtaba, y M. Mattsson, “Systematic Mapping Studies in Software Engineering”, en Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, Swinton, UK, UK, 2008, pp. 68–77.spa
dc.relation.referencesJ. M. Pérez, Inteligencia computacional inspirada en la vida. Servicio de Publicaciones e Intercambio Científico de la Universidad de Málaga, 2010.spa
dc.relation.referencesJ. Grbović y S. Džeroski, “Knowledge discovery in a water quality database”, Proc 1st Intl Conf Knowl. Discov. Data Min. KDD95 AAAI Press Menlo Park CA 1995.spa
dc.relation.referencesS. Džeroski, D. Demšar, y J. Grbović, “Predicting Chemical Parameters of River Water Quality from Bioindicator Data”, Appl. Intell., vol. 13, n.° 1, pp. 7–17, jul. 2000.spa
dc.relation.referencesL. Breiman, Classification and regression trees. Chapman & Hall, 1984.spa
dc.relation.referencesH. Blockeel, S. Dzeroski, y J. Grbovic, Simultaneous prediction of multiple chemical parameters of river water quality with TILDE. 1999.spa
dc.relation.referencesT. G. Dietterich, “Ensemble Methods in Machine Learning”, en Multiple Classifier Systems, Springer Berlin Heidelberg, 2000, pp. 1-15.spa
dc.relation.referencesI. Partalas, G. Tsoumakas, E. V. Hatzikos, y I. Vlahavas, “Greedy regression ensemble selection: Theory and an application to water quality prediction”, Inf. Sci., vol. 178, n.° 20, pp. 3867-3879, oct. 2008.spa
dc.relation.referencesG. Tan, J. Yan, C. Gao, y S. Yang, “Prediction of water quality time series data based on least squares support vector machine”, Procedia Eng., vol. 31, pp. 1194-1199, 2012.spa
dc.relation.referencesK. Gurney, An Introduction to Neural Networks. Taylor & Francis, 2003.spa
dc.relation.referencesD. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.spa
dc.relation.referencesE. Cox, The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using, and Maintaining Fuzzy Systems. San Diego, CA, USA: Academic Press Professional, Inc., 1994.spa
dc.relation.referencesC. E. Romero y J. Shan, “Development of an Artificial Neural Network-based Software for Prediction of Power Plant Canal Water Discharge Temperature”, Expert Syst Appl, vol. 29, n.° 4, pp. 831–838, nov. 2005.spa
dc.relation.referencesJ. Gutiérrez, W. Riss, y R. Ospina, “Bioindicación de la calidad del agua con macroinvertebrados acuáticos en la sabana de Bogotá, utilizando redes neuronales artificiales”, Caldasia, vol. 26, n.° 1, pp. 151-160, 2004.spa
dc.relation.referencesI. García, J. G. Rodríguez, F. López, y Y. M. Tenorio, “Transporte de contaminantes en aguas subterráneas mediante redes neuronales artificiales”, Inf. Tecnológica, vol. 21, n.° 5, pp. 79-86, 2010.spa
dc.relation.referencesA. I. Saint-Gerons y J. M. Adrados, “Desarrollo de una red neuronal para estimar el oxígeno disuelto en el agua a partir de instrumentación de EDAR”.spa
dc.relation.referencesA. Ogata y R. B. Banks, “A solution of the differential equation of longitudinal dispersion in porous media”, 1961.spa
dc.relation.referencesG. J. Pelletier, S. C. Chapra, y H. Tao, “QUAL2Kw – A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration”, Environ. Model. Softw., vol. 21, n.° 3, pp. 419-425, mar. 2006.spa
dc.relation.referencesS. Liu, D. Butler, R. Brazier, L. Heathwaite, y S.-T. Khu, “Using genetic algorithms to calibrate a water quality model”, Sci. Total Environ., vol. 374, n.° 2-3, pp. 260-272, mar. 2007.spa
dc.relation.referencesY. Huang y L. Liu, “Multiobjective Water Quality Model Calibration Using a Hybrid Genetic Algorithm and Neural Network–Based Approach”, J. Environ. Eng., vol. 136, n.° 10, pp. 1020-1031, 2010.spa
dc.relation.referencesK. Chau, “A Split-Step PSO Algorithm in Prediction of Water Quality Pollution”, en Advances in Neural Networks – ISNN 2005, J. Wang, X.-F. Liao, y Z. Yi, Eds. Springer Berlin Heidelberg, 2005, pp. 1034-1039.spa
dc.relation.referencesA. M. Baltar y D. G. Fontane, “A generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality”, Proc. Twenty Sixth Annu. Am. Geophys. Union Hydrol. Days, pp. 20-22, 2006.spa
dc.relation.referencesA. Afshar, H. Kazemi, y M. Saadatpour, “Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran”, Water Resour. Manag., vol. 25, n.° 10, pp. 2613-2632, ago. 2011.spa
dc.relation.referencesJ. Zhangzan, X. Gang, C. Jiujun, y G. Fei, “Anomaly detection of water quality based on visual perception and V-detector”, Inf. Control, vol. 1, p. 026, 2011.spa
dc.relation.referencesS. Liu, H. Tai, Q. Ding, D. Li, L. Xu, y Y. Wei, “A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction”, Math. Comput. Model., vol. 58, n.° 3-4, pp. 458-465, ago. 2013.spa
dc.relation.referencesS. Liu, L. Xu, D. Li, Q. Li, Y. Jiang, H. Tai, y L. Zeng, “Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization”, Comput. Electron. Agric., vol. 95, pp. 82-91, jul. 2013.spa
dc.relation.referencesD. Ömer Faruk, “A hybrid neural network and ARIMA model for water quality time series prediction”, Eng. Appl. Artif. Intell., vol. 23, n.° 4, pp. 586-594, jun. 2010.spa
dc.relation.referencesL. A. Díaz-Robles, J. C. Ortega, J. S. Fu, G. D. Reed, J. C. Chow, J. G. Watson, y J. A. Moncada-Herrera, “A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile”, Atmos. Environ., vol. 42, n.° 35, pp. 8331-8340, nov. 2008.spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científicospa
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International