Mostrar el registro sencillo del ítem
On the linear quadratic dynamic optimization problems with fixed-levels control functions
dc.creator | Azhmyakov V. | spa |
dc.creator | Trujillo L.A.G. | spa |
dc.date.accessioned | 2017-12-19T19:36:42Z | |
dc.date.available | 2017-12-19T19:36:42Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 11268042 | |
dc.identifier.uri | http://hdl.handle.net/11407/4256 | |
dc.description.abstract | This paper deals with a constrained LQ-type optimal control problem (OCP) in the presence of fixed levels input restrictions. We consider control processes governed by linear differential equations with a priori known control switching structure. The set of admissible inputs reflects some important natural engineering applications and moreover, can also be interpreted as a result of a quantization procedure applied to the original dynamic system. We propose a novel implementable algorithm that makes it possible to calculate a (numerically consistent) approximative solution to the constrained LQ-type OCPs under consideration. Our contribution mainly discusses theoretic aspects of the proposed solution scheme and contains an illustrative numerical example. © 2017, Forum-Editrice Universitaria Udinese SRL. All rights reserved. | eng |
dc.language.iso | eng | |
dc.publisher | Forum-Editrice Universitaria Udinese SRL | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016603353&partnerID=40&md5=e7a77b88d1c0caa2f5a939eb4d300620 | spa |
dc.source | Scopus | spa |
dc.title | On the linear quadratic dynamic optimization problems with fixed-levels control functions | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Azhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia | spa |
dc.contributor.affiliation | Trujillo, L.A.G., School of Ingeniering, Universidad de Medellin, Medellin, Colombia | spa |
dc.subject.keyword | Convex optimization | eng |
dc.subject.keyword | Numerical methods | eng |
dc.subject.keyword | Optimal control | eng |
dc.subject.keyword | Systems theory | eng |
dc.subject.keyword | Convex optimization | eng |
dc.subject.keyword | Differential equations | eng |
dc.subject.keyword | Optimal control systems | eng |
dc.subject.keyword | Optimization | eng |
dc.subject.keyword | System theory | eng |
dc.subject.keyword | Control functions | eng |
dc.subject.keyword | Control process | eng |
dc.subject.keyword | Control switching | eng |
dc.subject.keyword | Engineering applications | eng |
dc.subject.keyword | Linear differential equation | eng |
dc.subject.keyword | Linear quadratic | eng |
dc.subject.keyword | Optimal control problem | eng |
dc.subject.keyword | Optimal controls | eng |
dc.subject.keyword | Numerical methods | eng |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | This paper deals with a constrained LQ-type optimal control problem (OCP) in the presence of fixed levels input restrictions. We consider control processes governed by linear differential equations with a priori known control switching structure. The set of admissible inputs reflects some important natural engineering applications and moreover, can also be interpreted as a result of a quantization procedure applied to the original dynamic system. We propose a novel implementable algorithm that makes it possible to calculate a (numerically consistent) approximative solution to the constrained LQ-type OCPs under consideration. Our contribution mainly discusses theoretic aspects of the proposed solution scheme and contains an illustrative numerical example. © 2017, Forum-Editrice Universitaria Udinese SRL. All rights reserved. | eng |
dc.creator.affiliation | Department of Basic Sciences, Universidad de Medellin, Medellin, Colombia | spa |
dc.creator.affiliation | School of Ingeniering, Universidad de Medellin, Medellin, Colombia | spa |
dc.relation.ispartofes | Italian Journal of Pure and Applied Mathematics | spa |
dc.relation.ispartofes | Italian Journal of Pure and Applied Mathematics Volume 2017, Issue 37, January 2017, Pages 219-237 | spa |
dc.relation.references | Ali, U., Cai, H., Mostofi, Y., & Wardi, Y. (2016). Motion and communication co-optimization with path planning and online channel prediction. Paper presented at the Proceedings of the American Control Conference, , 2016-July 7079-7084. doi:10.1109/ACC.2016.7526789 | spa |
dc.relation.references | Armijo, L. (1966). Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1-3. | spa |
dc.relation.references | Azhmyakov, V., Basin, M. V., & Gil García, A. E. (2014). Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics. Kybernetika, 50(1), 5-18. doi:10.14736/kyb-2014-1-0005 | spa |
dc.relation.references | Azhmyakov, V., Boltyanski, V. G., & Poznyak, A. (2008). Optimal control of impulsive hybrid systems. Nonlinear Analysis: Hybrid Systems, 2(4), 1089-1097. doi:10.1016/j.nahs.2008.09.003 | spa |
dc.relation.references | Azhmyakov, V., Galvan-Guerra, R., & Egerstedt, M. (2009). Hybrid LQ-optimization using dynamic programming. Paper presented at the Proceedings of the American Control Conference, 3617-3623. doi:10.1109/ACC.2009.5160100 | spa |
dc.relation.references | Azhmyakov, V., Galván-Guerra, R., & Egerstedt, M. (2010). On the LQ-based optimization techniques for impulsive hybrid control systems. Paper presented at the Proceedings of the 2010 American Control Conference, ACC 2010, 129-135. | spa |
dc.relation.references | Azhmyakov, V., & Juarez, R. (2015). On the projected gradient methods for switched - mode systems optimization. IFAC-PapersOnLine, 48(27), 181-186. doi:10.1016/j.ifacol.2015.11.172 | spa |
dc.relation.references | Azhmyakov, V., Juarez, R., & Pickl, S. (2015). On the local convexity of singular optimal control problems associated with the switched-mode dynamic systems. IFAC-PapersOnLine, 28(25), 271-276. doi:10.1016/j.ifacol.2015.11.099 | spa |
dc.relation.references | Azhmyakov, V., Martinez, J. C., & Poznyak, A. (2016). Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals. Optimal Control Applications and Methods, 37(5), 1035-1055. doi:10.1002/oca.2223 | spa |
dc.relation.references | Azhmyakov, V., & Raisch, J. (2008). Convex control systems and convex optimal control problems with constraints. IEEE Transactions on Automatic Control, 53(4), 993-998. doi:10.1109/TAC.2008.919848 | spa |
dc.relation.references | Azhmyakov, V., Serrezuela, R. R., & Trujillo, L. A. G. (2014). Approximations based optimal control design for a class of switched dynamic systems. Paper presented at the IECON Proceedings (Industrial Electronics Conference), 90-95. doi:10.1109/IECON.2014.7048482 | spa |
dc.relation.references | Banks, S. P., & Khathur, S. A. (1989). Structure and control of piecewise-linear systems. International Journal of Control, 50(2), 667-686. doi:10.1080/00207178908953388 | spa |
dc.relation.references | Betts, J. T. (2001). Practical Methods for Optimal Control using Nonlinear Programming. | spa |
dc.relation.references | Boltyanski, V., & Poznyak, A. (2012). The robust maximum principle. The Robust Maximum Principle. | spa |
dc.relation.references | Bonilla, M., Malabre, M., & Azhmyakov, V. (2015). An implicit systems characterization of a class of impulsive linear switched control processes. part 1: Modeling. Nonlinear Analysis: Hybrid Systems, 15, 157-170. doi:10.1016/j.nahs.2014.04.002 | spa |
dc.relation.references | Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31-45. doi:10.1109/9.654885 | spa |
dc.relation.references | Brockett, R. W., & Liberzon, D. (2000). Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45(7), 1279-1289. doi:10.1109/9.867021 | spa |
dc.relation.references | Cassandras, C. G., Pepyne, D. L., & Wardi, Y. (2001). Optimal control of a class of hybrid systems. IEEE Transactions on Automatic Control, 46(3), 398-415. doi:10.1109/9.911417 | spa |
dc.relation.references | Ding, X. -., Wardi, Y., & Egerstedt, M. (2009). On-line optimization of switched-mode dynamical systems. IEEE Transactions on Automatic Control, 54(9), 2266-2271. doi:10.1109/TAC.2009.2026864 | spa |
dc.relation.references | Egerstedt, M., Wardi, Y., & Axelsson, H. (2006). Transition-time optimization for switched-mode dynamical systems. IEEE Transactions on Automatic Control, 51(1), 110-115. doi:10.1109/TAC.2005.861711 | spa |
dc.relation.references | Fattorini, H. O. (1999). Infinite Dimensional Optimization and Control Theory. | spa |
dc.relation.references | Galván-Guerra, R., Azhmyakov, V., & Egerstedt, M. (2011). Optimization of multiagent systems with increasing state dimensions: Hybrid LQ approach. Paper presented at the Proceedings of the American Control Conference, 881-887. | spa |
dc.relation.references | Garavello, M., & Piccoli, B. (2005). Hybrid necessary principle. SIAM Journal on Control and Optimization, 43(5), 1867-1887. doi:10.1137/S0363012903416219 | spa |
dc.relation.references | Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimization. | spa |
dc.relation.references | Goebel, R., & Subbotin, M. (2007). Continuous time linear quadratic regulator with control constraints via convex duality. IEEE Transactions on Automatic Control, 52(5), 886-892. doi:10.1109/TAC.2007.895915 | spa |
dc.relation.references | Goodwin, G. C., Seron, M. M., & De Doná, J. A. (2005). Constrained Control & Estimation - an Optimization Perspective. | spa |
dc.relation.references | Kirk, D. E. (2004). Optimal Control Theory: An Introduction | spa |
dc.relation.references | Kojima, A., & Morari, M. (2004). LQ control for constrained continuous-time systems. Automatica, 40(7), 1143-1155. doi:10.1016/j.automatica.2004.02.007 | spa |
dc.relation.references | Lozovanu, D., & Pickl, S. (2015). Determining the optimal strategies for discrete control problems on stochastic networks with discounted costs. Discrete Applied Mathematics, 182, 169-180. doi:10.1016/j.dam.2014.09.009 | spa |
dc.relation.references | Lozovanu, D., & Pickl, S. (2014). Optimization of Stochastic Discrete Systems and Control on Complex Networks: Computational Networks. | spa |
dc.relation.references | Lygeros, J. (2004). Lecture Notes on Hybrid Systems. | spa |
dc.relation.references | Martinez, J. C., & Azhmyakov, V. (2013). Optimal switched-type control design for a class of nonlinear systems. Paper presented at the IEEE International Conference on Automation Science and Engineering, 1069-1074. doi:10.1109/CoASE.2013.6653904 | spa |
dc.relation.references | Polak, E. (1997). Optimization. | spa |
dc.relation.references | Poznyak, A., Polyakov, A., & Azhmyakov, V. (2014). Attractive ellipsoids in robust control. Attractive Ellipsoids in Robust Control. | spa |
dc.relation.references | Pytlak, R. (1999). Numerical methods for optimal control problems with state constraints. Numerical Methods for Optimal Control Problems with State Constraints. | spa |
dc.relation.references | Rantzer, A., & Johansson, M. (2000). Piecewise linear quadratic optimal control. IEEE Transactions on Automatic Control, 45(4), 629-637. doi:10.1109/9.847100 | spa |
dc.relation.references | Rockafellar, R. T. (1970). Convex Analysis. | spa |
dc.relation.references | Shaikh, M. S., & Caines, P. E. (2007). On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control, 52(9), 1587-1603. doi:10.1109/TAC.2007.904451 | spa |
dc.relation.references | Stanton, S. A., & Marchand, B. G. (2010). Finite set control transcription for optimal control applications. Journal of Spacecraft and Rockets, 47(3), 457-471. doi:10.2514/1.44056 | spa |
dc.relation.references | Stoer, J., & Bulirsch, R. (1980). Introduction to Numerical Analysis. | spa |
dc.relation.references | Taringoo, F., & Caines, P. E. (2009). The sensitivity of hybrid systems optimal cost functions with respect to switching manifold parameters doi:10.1007/978-3-642-00602-9_38 | spa |
dc.relation.references | Teo, K. L., Goh, C. J., & Wong, K. H. (1991). A Unified Computational Approach to Optimal Control Problems. | spa |
dc.relation.references | Verriest, E. I. (2009). Multi-mode multi-dimensional systems with poissonian sequencing. The Brockett Legacy Issue of Communications in Information and Systems, 9(1), 77-102. | spa |
dc.relation.references | Wonham, W. M. (1985). Linear Multivariable Control: A Geometric Approach. | spa |
dc.relation.references | Xu, X., & Antsaklis, P. J. (2003). Optimal control of hybrid autonomous systems with state jumps. Paper presented at the Proceedings of the American Control Conference, 6 5191-5196. | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1813]