Mostrar el registro sencillo del ítem

dc.creatorAzhmyakov V.spa
dc.creatorTrujillo L.A.G.spa
dc.date.accessioned2017-12-19T19:36:42Z
dc.date.available2017-12-19T19:36:42Z
dc.date.created2017
dc.identifier.issn11268042
dc.identifier.urihttp://hdl.handle.net/11407/4256
dc.description.abstractThis paper deals with a constrained LQ-type optimal control problem (OCP) in the presence of fixed levels input restrictions. We consider control processes governed by linear differential equations with a priori known control switching structure. The set of admissible inputs reflects some important natural engineering applications and moreover, can also be interpreted as a result of a quantization procedure applied to the original dynamic system. We propose a novel implementable algorithm that makes it possible to calculate a (numerically consistent) approximative solution to the constrained LQ-type OCPs under consideration. Our contribution mainly discusses theoretic aspects of the proposed solution scheme and contains an illustrative numerical example. © 2017, Forum-Editrice Universitaria Udinese SRL. All rights reserved.eng
dc.language.isoeng
dc.publisherForum-Editrice Universitaria Udinese SRLspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85016603353&partnerID=40&md5=e7a77b88d1c0caa2f5a939eb4d300620spa
dc.sourceScopusspa
dc.titleOn the linear quadratic dynamic optimization problems with fixed-levels control functionsspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationAzhmyakov, V., Department of Basic Sciences, Universidad de Medellin, Medellin, Colombiaspa
dc.contributor.affiliationTrujillo, L.A.G., School of Ingeniering, Universidad de Medellin, Medellin, Colombiaspa
dc.subject.keywordConvex optimizationeng
dc.subject.keywordNumerical methodseng
dc.subject.keywordOptimal controleng
dc.subject.keywordSystems theoryeng
dc.subject.keywordConvex optimizationeng
dc.subject.keywordDifferential equationseng
dc.subject.keywordOptimal control systemseng
dc.subject.keywordOptimizationeng
dc.subject.keywordSystem theoryeng
dc.subject.keywordControl functionseng
dc.subject.keywordControl processeng
dc.subject.keywordControl switchingeng
dc.subject.keywordEngineering applicationseng
dc.subject.keywordLinear differential equationeng
dc.subject.keywordLinear quadraticeng
dc.subject.keywordOptimal control problemeng
dc.subject.keywordOptimal controlseng
dc.subject.keywordNumerical methodseng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThis paper deals with a constrained LQ-type optimal control problem (OCP) in the presence of fixed levels input restrictions. We consider control processes governed by linear differential equations with a priori known control switching structure. The set of admissible inputs reflects some important natural engineering applications and moreover, can also be interpreted as a result of a quantization procedure applied to the original dynamic system. We propose a novel implementable algorithm that makes it possible to calculate a (numerically consistent) approximative solution to the constrained LQ-type OCPs under consideration. Our contribution mainly discusses theoretic aspects of the proposed solution scheme and contains an illustrative numerical example. © 2017, Forum-Editrice Universitaria Udinese SRL. All rights reserved.eng
dc.creator.affiliationDepartment of Basic Sciences, Universidad de Medellin, Medellin, Colombiaspa
dc.creator.affiliationSchool of Ingeniering, Universidad de Medellin, Medellin, Colombiaspa
dc.relation.ispartofesItalian Journal of Pure and Applied Mathematicsspa
dc.relation.ispartofesItalian Journal of Pure and Applied Mathematics Volume 2017, Issue 37, January 2017, Pages 219-237spa
dc.relation.referencesAli, U., Cai, H., Mostofi, Y., & Wardi, Y. (2016). Motion and communication co-optimization with path planning and online channel prediction. Paper presented at the Proceedings of the American Control Conference, , 2016-July 7079-7084. doi:10.1109/ACC.2016.7526789spa
dc.relation.referencesArmijo, L. (1966). Minimization of functions having lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1-3.spa
dc.relation.referencesAzhmyakov, V., Basin, M. V., & Gil García, A. E. (2014). Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics. Kybernetika, 50(1), 5-18. doi:10.14736/kyb-2014-1-0005spa
dc.relation.referencesAzhmyakov, V., Boltyanski, V. G., & Poznyak, A. (2008). Optimal control of impulsive hybrid systems. Nonlinear Analysis: Hybrid Systems, 2(4), 1089-1097. doi:10.1016/j.nahs.2008.09.003spa
dc.relation.referencesAzhmyakov, V., Galvan-Guerra, R., & Egerstedt, M. (2009). Hybrid LQ-optimization using dynamic programming. Paper presented at the Proceedings of the American Control Conference, 3617-3623. doi:10.1109/ACC.2009.5160100spa
dc.relation.referencesAzhmyakov, V., Galván-Guerra, R., & Egerstedt, M. (2010). On the LQ-based optimization techniques for impulsive hybrid control systems. Paper presented at the Proceedings of the 2010 American Control Conference, ACC 2010, 129-135.spa
dc.relation.referencesAzhmyakov, V., & Juarez, R. (2015). On the projected gradient methods for switched - mode systems optimization. IFAC-PapersOnLine, 48(27), 181-186. doi:10.1016/j.ifacol.2015.11.172spa
dc.relation.referencesAzhmyakov, V., Juarez, R., & Pickl, S. (2015). On the local convexity of singular optimal control problems associated with the switched-mode dynamic systems. IFAC-PapersOnLine, 28(25), 271-276. doi:10.1016/j.ifacol.2015.11.099spa
dc.relation.referencesAzhmyakov, V., Martinez, J. C., & Poznyak, A. (2016). Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals. Optimal Control Applications and Methods, 37(5), 1035-1055. doi:10.1002/oca.2223spa
dc.relation.referencesAzhmyakov, V., & Raisch, J. (2008). Convex control systems and convex optimal control problems with constraints. IEEE Transactions on Automatic Control, 53(4), 993-998. doi:10.1109/TAC.2008.919848spa
dc.relation.referencesAzhmyakov, V., Serrezuela, R. R., & Trujillo, L. A. G. (2014). Approximations based optimal control design for a class of switched dynamic systems. Paper presented at the IECON Proceedings (Industrial Electronics Conference), 90-95. doi:10.1109/IECON.2014.7048482spa
dc.relation.referencesBanks, S. P., & Khathur, S. A. (1989). Structure and control of piecewise-linear systems. International Journal of Control, 50(2), 667-686. doi:10.1080/00207178908953388spa
dc.relation.referencesBetts, J. T. (2001). Practical Methods for Optimal Control using Nonlinear Programming.spa
dc.relation.referencesBoltyanski, V., & Poznyak, A. (2012). The robust maximum principle. The Robust Maximum Principle.spa
dc.relation.referencesBonilla, M., Malabre, M., & Azhmyakov, V. (2015). An implicit systems characterization of a class of impulsive linear switched control processes. part 1: Modeling. Nonlinear Analysis: Hybrid Systems, 15, 157-170. doi:10.1016/j.nahs.2014.04.002spa
dc.relation.referencesBranicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31-45. doi:10.1109/9.654885spa
dc.relation.referencesBrockett, R. W., & Liberzon, D. (2000). Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45(7), 1279-1289. doi:10.1109/9.867021spa
dc.relation.referencesCassandras, C. G., Pepyne, D. L., & Wardi, Y. (2001). Optimal control of a class of hybrid systems. IEEE Transactions on Automatic Control, 46(3), 398-415. doi:10.1109/9.911417spa
dc.relation.referencesDing, X. -., Wardi, Y., & Egerstedt, M. (2009). On-line optimization of switched-mode dynamical systems. IEEE Transactions on Automatic Control, 54(9), 2266-2271. doi:10.1109/TAC.2009.2026864spa
dc.relation.referencesEgerstedt, M., Wardi, Y., & Axelsson, H. (2006). Transition-time optimization for switched-mode dynamical systems. IEEE Transactions on Automatic Control, 51(1), 110-115. doi:10.1109/TAC.2005.861711spa
dc.relation.referencesFattorini, H. O. (1999). Infinite Dimensional Optimization and Control Theory.spa
dc.relation.referencesGalván-Guerra, R., Azhmyakov, V., & Egerstedt, M. (2011). Optimization of multiagent systems with increasing state dimensions: Hybrid LQ approach. Paper presented at the Proceedings of the American Control Conference, 881-887.spa
dc.relation.referencesGaravello, M., & Piccoli, B. (2005). Hybrid necessary principle. SIAM Journal on Control and Optimization, 43(5), 1867-1887. doi:10.1137/S0363012903416219spa
dc.relation.referencesGill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimization.spa
dc.relation.referencesGoebel, R., & Subbotin, M. (2007). Continuous time linear quadratic regulator with control constraints via convex duality. IEEE Transactions on Automatic Control, 52(5), 886-892. doi:10.1109/TAC.2007.895915spa
dc.relation.referencesGoodwin, G. C., Seron, M. M., & De Doná, J. A. (2005). Constrained Control & Estimation - an Optimization Perspective.spa
dc.relation.referencesKirk, D. E. (2004). Optimal Control Theory: An Introductionspa
dc.relation.referencesKojima, A., & Morari, M. (2004). LQ control for constrained continuous-time systems. Automatica, 40(7), 1143-1155. doi:10.1016/j.automatica.2004.02.007spa
dc.relation.referencesLozovanu, D., & Pickl, S. (2015). Determining the optimal strategies for discrete control problems on stochastic networks with discounted costs. Discrete Applied Mathematics, 182, 169-180. doi:10.1016/j.dam.2014.09.009spa
dc.relation.referencesLozovanu, D., & Pickl, S. (2014). Optimization of Stochastic Discrete Systems and Control on Complex Networks: Computational Networks.spa
dc.relation.referencesLygeros, J. (2004). Lecture Notes on Hybrid Systems.spa
dc.relation.referencesMartinez, J. C., & Azhmyakov, V. (2013). Optimal switched-type control design for a class of nonlinear systems. Paper presented at the IEEE International Conference on Automation Science and Engineering, 1069-1074. doi:10.1109/CoASE.2013.6653904spa
dc.relation.referencesPolak, E. (1997). Optimization.spa
dc.relation.referencesPoznyak, A., Polyakov, A., & Azhmyakov, V. (2014). Attractive ellipsoids in robust control. Attractive Ellipsoids in Robust Control.spa
dc.relation.referencesPytlak, R. (1999). Numerical methods for optimal control problems with state constraints. Numerical Methods for Optimal Control Problems with State Constraints.spa
dc.relation.referencesRantzer, A., & Johansson, M. (2000). Piecewise linear quadratic optimal control. IEEE Transactions on Automatic Control, 45(4), 629-637. doi:10.1109/9.847100spa
dc.relation.referencesRockafellar, R. T. (1970). Convex Analysis.spa
dc.relation.referencesShaikh, M. S., & Caines, P. E. (2007). On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control, 52(9), 1587-1603. doi:10.1109/TAC.2007.904451spa
dc.relation.referencesStanton, S. A., & Marchand, B. G. (2010). Finite set control transcription for optimal control applications. Journal of Spacecraft and Rockets, 47(3), 457-471. doi:10.2514/1.44056spa
dc.relation.referencesStoer, J., & Bulirsch, R. (1980). Introduction to Numerical Analysis.spa
dc.relation.referencesTaringoo, F., & Caines, P. E. (2009). The sensitivity of hybrid systems optimal cost functions with respect to switching manifold parameters doi:10.1007/978-3-642-00602-9_38spa
dc.relation.referencesTeo, K. L., Goh, C. J., & Wong, K. H. (1991). A Unified Computational Approach to Optimal Control Problems.spa
dc.relation.referencesVerriest, E. I. (2009). Multi-mode multi-dimensional systems with poissonian sequencing. The Brockett Legacy Issue of Communications in Information and Systems, 9(1), 77-102.spa
dc.relation.referencesWonham, W. M. (1985). Linear Multivariable Control: A Geometric Approach.spa
dc.relation.referencesXu, X., & Antsaklis, P. J. (2003). Optimal control of hybrid autonomous systems with state jumps. Paper presented at the Proceedings of the American Control Conference, 6 5191-5196.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem