Mostrar el registro sencillo del ítem

dc.creatorZuleta A.A.spa
dc.creatorCorrea E.spa
dc.creatorCastaño J.G.spa
dc.creatorEcheverría F.spa
dc.creatorBaron-Wiecheć A.spa
dc.creatorSkeldon P.spa
dc.creatorThompson G.E.spa
dc.date.accessioned2017-12-19T19:36:48Z
dc.date.available2017-12-19T19:36:48Z
dc.date.created2017
dc.identifier.issn2578972
dc.identifier.urihttp://hdl.handle.net/11407/4323
dc.description.abstractIn this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.spa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85019001282&doi=10.1016%2fj.surfcoat.2017.04.059&partnerID=40&md5=7978d2474257b32cbaecfe7d7fd134d1spa
dc.sourceScopusspa
dc.titleStudy of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloyspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, Colombiaspa
dc.contributor.affiliationCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombiaspa
dc.contributor.affiliationCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombiaspa
dc.contributor.affiliationEcheverría, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombiaspa
dc.contributor.affiliationBaron-Wiecheć, A., UK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United Kingdomspa
dc.contributor.affiliationSkeldon, P., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdomspa
dc.contributor.affiliationThompson, G.E., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdomspa
dc.identifier.doi10.1016/j.surfcoat.2017.04.059
dc.subject.keywordCoatings growneng
dc.subject.keywordElectroless coatingseng
dc.subject.keywordMagnesiumeng
dc.subject.keywordSurface morphologyeng
dc.subject.keywordAlkalinityeng
dc.subject.keywordChromium compoundseng
dc.subject.keywordCoatingseng
dc.subject.keywordMagnesium alloyseng
dc.subject.keywordNickeleng
dc.subject.keywordRutherford backscattering spectroscopyeng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordSubstrateseng
dc.subject.keywordSurface morphologyeng
dc.subject.keywordX ray diffractioneng
dc.subject.keywordAZ31B magnesium alloyseng
dc.subject.keywordElectroless coatingeng
dc.subject.keywordElectroless Ni-P coatingeng
dc.subject.keywordElectroless Ni-P depositionseng
dc.subject.keywordElectroless ni-p platingeng
dc.subject.keywordGravimetric measurementseng
dc.subject.keywordOpen circuit potential measurementseng
dc.subject.keywordRutherford backscattering spectrometryeng
dc.subject.keywordMagnesiumeng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractIn this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V.eng
dc.creator.affiliationGrupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, Colombiaspa
dc.creator.affiliationGrupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombiaspa
dc.creator.affiliationCentro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombiaspa
dc.creator.affiliationUK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United Kingdomspa
dc.creator.affiliationCorrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdomspa
dc.relation.ispartofesSurface and Coatings Technologyspa
dc.relation.referencesCao, F., Song, G.L., Atrens, A., Corrosion and passivation of magnesium alloys Corros. Sci., 111, pp. 835-845spa
dc.relation.referencesLi, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution Corros. Sci., 111, pp. 288-301spa
dc.relation.referencesAtrens, A., Song, G.L., Liu, M., Shi, Z., Cao, F., Dargusch, M.S., Review of recent developments in the field of magnesium corrosion Adv. Eng. Mater., 17, pp. 400-453spa
dc.relation.referencesEsmaily, M., Blücher, D.B., Svensson, J.E., Halvarsson, M., Johansson, L.G., New insights into the corrosion of magnesium alloys — the role of aluminum Scr. Mater., 115, pp. 91-95spa
dc.relation.referencesShu, X., Wang, Y., Liu, C., Aljaafari, A., Gao, W., Double-layered Ni-P/Ni-P-ZrO2 electroless coatings on AZ31 magnesium alloy with improved corrosion resistance Surf. Coat. Technol., 261, pp. 161-166spa
dc.relation.referencesLee, J., Chung, W., Jung, U., Kim, Y., Direct nickel electrodeposition on magnesium alloy in pyrophosphate electrolyte Surf. Coat. Technol., 205, pp. 4018-4023spa
dc.relation.referencesSelvi, V.E., Chatterji, P., Subramanian, S., Balaraju, J.N., Autocatalytic duplex Ni–P/Ni–W–P coatings on AZ31B magnesium alloy Surf. Coat. Technol., 240, pp. 103-109spa
dc.relation.referencesCalderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings Surf. Coat. Technol., 304, pp. 167-178spa
dc.relation.referencesCorrea, E., Zuleta, A.A., Guerra, L., Gómez, M.A., Castaño, J.G., Echeverría, F., Liu, H., Thompson, G.E., Coating development during electroless Ni-B plating on magnesium and AZ91D alloy Surf. Coat. Technol., 232, pp. 784-794spa
dc.relation.referencesZuleta, A.A., Correa, E., Sepúlveda, M., Guerra, L., Castaño, J.G., Echeverría, F., Skeldon, P., Thompson, G.E., Effect of NH4HF2 on deposition of alkaline electroless Ni-P coatings as a chromium-free pre-treatment for magnesium Corros. Sci., 55, pp. 194-200spa
dc.relation.referencesLiu, Z., Electroless Nickel-Phosphorus (EN) Coatings on Magnesium and Magnesium Alloys (Doctoral thesis) University of AucklandHu, R., Su, Y., Liu, H., Deposition behaviour of nickel phosphorus coating on magnesium alloy in a weak corrosive electroless nickel plating bath J. Alloys Compd., 658, pp. 555-560spa
dc.relation.referencesDong, X., Handbook of Manufacturing Engineering and Technology, pp. 1-21. , A. Nee Springer London Londonspa
dc.relation.referencesYang, X., Wang, G., Dong, G., Gong, F., Zhang, M., Rare earth conversion coating on Mg–8.5Li alloys J. Alloys Compd., 487, pp. 64-68spa
dc.relation.referencesWang, G., Zhang, M., Wu, R., Molybdate and molybdate/permanganate conversion coatings on Mg–8.5Li alloy Appl. Surf. Sci., 258, pp. 2648-2654spa
dc.relation.referencesJiang, B.L., Ge, Y.F., 7 - Micro-arc Oxidation (MAO) to Improve the Corrosion Resistance of Magnesium (Mg) Alloys , pp. 163-196. , Woodhead Publishing Series in Metals and Surface Engineering, edited by Guang-Ling Song, Woodhead Publishing Series in Metals and Surface Engineering, Corrosion Prevention of Magnesium AlloysWhite, L., Koo, Y., Neralla, S., Sankar, J., Yun, Y., Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO) Mater. Sci. Eng. B, 208, pp. 39-46spa
dc.relation.referencesHoche, H., Groß, S., Oechsner, M., Development of new PVD coatings for magnesium alloys with improved corrosion properties Surf. Coat. Technol., 259, pp. 102-108. , (Part A)spa
dc.relation.referencesSivapragash, M., Kumaradhas, P., Stanly Jones Retnam, B., Felix Joseph, X., Pillai, U.T.S., Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy Mater. Des., 90, pp. 713-722spa
dc.relation.referencesCui, Z., Shi, H., Wang, W., Xu, B., Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling Trans. Nonferrous Metals Soc. China, 25, pp. 1446-1453spa
dc.relation.referencesMallory, G.O., Hajdu, J.B., Electroless Plating -Fundamentals and Applications William Andrew Publishing/NoyesZuleta, A.A., Correa, E., Villada, C., Sepúlveda, M., Castaño, J.G., Echeverría, F., Comparative study of different environmentally friendly (chromium-free) methods for surface modification of pure magnesium Surf. Coat. Technol., 205, pp. 5254-5259spa
dc.relation.referencesWu, L., Zhao, J., Xie, Y., Yang, Z., Progress of electroplating and electroless plating on magnesium alloy Trans. Nonferrous Metals Soc. China, 20, pp. s630-s637spa
dc.relation.referencesShu, X., Wang, Y., Peng, J., Yan, P., Yan, B., Fang, X., Xu, Y., Recent progress in electroless ni coatings for magnesium alloys Int. J. Electrochem. Sci., 10, pp. 1261-1273spa
dc.relation.referencesLiu, Z., Gao, W., The effect of substrate on the electroless nickel plating of Mg and Mg alloys Surf. Coat. Technol., 200, pp. 3553-3560spa
dc.relation.referencesLiu, X., Liu, Z., Liu, P., Xiang, Y., Hu, W., Ding, W., Properties of fluoride film and its effect on electroless nickel deposition on magnesium alloys Trans. Nonferrous Metals Soc. China, 20, pp. 2185-2191spa
dc.relation.referencesQin, T., Ma, L., Yao, Y., Ni, C., Zhao, X., Ding, Y., An in situ measure method to study deposition mechanism of electroless Ni-P plating on AZ31 magnesium alloy Trans. Nonferrous Metals Soc. China, 21, pp. 2790-2797spa
dc.relation.referencesDhinakaran, R., Elansezhian, R., Lalitha, A.A., Effect of nanoadditives with surfactant on the surface characteristics of electroless nickel coating on magnesium-based composites reinforced with MWCNT Adv. Tribol., 2013spa
dc.relation.referencesSahoo, P., Optimization of electroless Ni-P coatings based on multiple roughness characteristics Surf. Interface Anal., 40, pp. 1552-1561spa
dc.relation.referencesVitry, V., Sens, A., Kanta, A.F., Delaunois, F., Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel Appl. Surf. Sci., 263, pp. 640-647spa
dc.relation.referencesXavior, M.A., Yarlagadda, P.K.D.V., Gadhari, P., Sahoo, P., Influence of process parameters on multiple roughness characteristics of Ni–P–TiO2 composite coatings Procedia Eng., 97, pp. 439-448spa
dc.relation.referencesDoolittle, L.R., Algorithms for the rapid simulation of Rutherford backscattering spectra Nucl. Instrum. Methods Phys. Res., Sect. B, 9, pp. 344-351spa
dc.relation.referencesVitry, V., Kanta, A.-F., Delaunois, F., Initiation and formation of electroless nickel–boron coatings on mild steel: effect of substrate roughness Mater. Sci. Eng. B, 175, pp. 266-273spa
dc.relation.referencesAmbat, R., Zhou, W., Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters Surf. Coat. Technol., 179, pp. 124-134spa
dc.relation.referencesSong, G., Atrens, A., Understanding magnesium corrosion—a framework for improved alloy performance Adv. Eng. Mater., 5, pp. 837-858spa
dc.relation.referencesSevonkaev, I., Goia, D.V., Matijević, E., Formation and structure of cubic particles of sodium magnesium fluoride (neighborite) J. Colloid Interface Sci., 317, pp. 130-136spa
dc.relation.referencesZhao, D., Zhou, L., Du, Y., Wang, A., Peng, Y., Kong, Y., Sha, C., Zhang, W., Structure, elastic and thermodynamic properties of the Ni–P system from first-principles calculations Calphad, 35, pp. 284-291spa
dc.relation.referencesLee, S.B., Kim, Y.M., Signature of surface energy dependence of partial dislocation slip in a gold nanometer-sized protrusion Scr. Mater., 64, pp. 1125-1128spa
dc.relation.referencesBagheri, S., Guagliano, M., Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys Surf. Eng., 25, pp. 3-14spa
dc.relation.referencesDeendarlianto, Y.T., Kohno, M., Hidaka, S., Wakui, T., Majid, A.I., Kuntoro, H., Indarto, Widyaparaga, A., The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces Int. J. Heat Mass Transf., 101, pp. 1217-1226spa
dc.relation.referencesZhou, C., Yang, Y., Zhang, J., Xu, S., Wu, S., Hu, H., Chen, B., Zhao, X., Enhanced electrochemical performance of the counterelectrode of dye sensitized solar cells by sandblasting Electrochim. Acta, 54, pp. 5320-5325spa
dc.relation.referencesBradford, P.M., Case, B., Dearnaley, G., Turner, J.F., Woolsey, I.S., Papers presented at a conference on ion implantation and ion beam analysis techniques in corrosion studies: ion beam analysis of corrosion films on a high magnesium alloy (Magnox Al 80) Corros. Sci., 16, pp. 747-766spa
dc.relation.referencesTurhan, C.M., Surface Modification of mg and Mg Alloys https://opus4.kobv.de/opus4-fau/frontdoor/index/index/year/2012/docId/2106, Erlangen-Nürnberg Universität Erlangen-NürnbergWhitten, K., Davis, R., Peck, L., Stanley, G., Chemistry, 10th Editi Brooks Cole BostonZhang, Z., Yu, G., Ouyang, Y., He, X., Hu, B., Zhang, J., Wu, Z., Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D Appl. Surf. Sci., 255, pp. 7773-7779spa
dc.relation.referencesMakar, G.L., Kruger, J., Corrosion of magnesium Int. Mater. Rev., 38. , (138–)spa
dc.relation.referencesZhang, Y.Z., Wu, Y.Y., Yao, M., Characterization of electroless nickel with low phosphorus J. Mater. Sci. Lett., 17, pp. 37-40spa
dc.relation.referencesWang, L., Li, J., Liu, H., A simple process for electroless plating nickel—phosphorus film on wood veneer Wood Sci. Technol., 45, pp. 161-167spa
dc.relation.referencesEl-Taib Heakal, F., Fekry, A.M., Fatayerji, M.Z., Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions Electrochim. Acta, 54, pp. 1545-1557spa
dc.relation.referencesVerdier, S., van der Laak, N., Delalande, S., Metson, J., Dalard, F., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS Appl. Surf. Sci., 235, pp. 513-524spa
dc.relation.referencesSchlesinger, M., Meng, X., Snyder, D.D., The microstructure and electrochemical properties of electroless zinc-nickel-phosphorus alloy J. Electrochem. Soc., 138, pp. 406-410spa
dc.relation.referencesLian, J.S., Li, G.Y., Niu, L.Y., Gu, C.D., Jiang, Z.H., Jiang, Q., Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy Surf. Coat. Technol., 200, pp. 5956-5962spa
dc.relation.referencesChen, J., Yu, G., Hu, B., Liu, Z., Ye, L., Wang, Z., A zinc transition layer in electroless nickel plating Surf. Coat. Technol., 201, pp. 686-690spa
dc.relation.referencesAbulsain, M., Berkani, A., Bonilla, F.A., Liu, Y., Arenas, M.A., Skeldon, P., Anodic oxidation of Mg–Cu and Mg–Zn alloys Electrochim. Acta, 49, pp. 899-904spa
dc.relation.referencesNěmcová, A., Galal, O., Skeldon, P., Kuběna, I., Šmíd, M., Briand, E., Vickridge, I., Habazaki, H., Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents Electrochim. Acta, 219, pp. 28-37spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem