dc.creator | Zuleta A.A. | spa |
dc.creator | Correa E. | spa |
dc.creator | Castaño J.G. | spa |
dc.creator | Echeverría F. | spa |
dc.creator | Baron-Wiecheć A. | spa |
dc.creator | Skeldon P. | spa |
dc.creator | Thompson G.E. | spa |
dc.date.accessioned | 2017-12-19T19:36:48Z | |
dc.date.available | 2017-12-19T19:36:48Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 2578972 | |
dc.identifier.uri | http://hdl.handle.net/11407/4323 | |
dc.description.abstract | In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V. | eng |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019001282&doi=10.1016%2fj.surfcoat.2017.04.059&partnerID=40&md5=7978d2474257b32cbaecfe7d7fd134d1 | spa |
dc.source | Scopus | spa |
dc.title | Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Zuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, Colombia | spa |
dc.contributor.affiliation | Correa, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombia | spa |
dc.contributor.affiliation | Castaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombia | spa |
dc.contributor.affiliation | Echeverría, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombia | spa |
dc.contributor.affiliation | Baron-Wiecheć, A., UK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United Kingdom | spa |
dc.contributor.affiliation | Skeldon, P., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdom | spa |
dc.contributor.affiliation | Thompson, G.E., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdom | spa |
dc.identifier.doi | 10.1016/j.surfcoat.2017.04.059 | |
dc.subject.keyword | Coatings grown | eng |
dc.subject.keyword | Electroless coatings | eng |
dc.subject.keyword | Magnesium | eng |
dc.subject.keyword | Surface morphology | eng |
dc.subject.keyword | Alkalinity | eng |
dc.subject.keyword | Chromium compounds | eng |
dc.subject.keyword | Coatings | eng |
dc.subject.keyword | Magnesium alloys | eng |
dc.subject.keyword | Nickel | eng |
dc.subject.keyword | Rutherford backscattering spectroscopy | eng |
dc.subject.keyword | Scanning electron microscopy | eng |
dc.subject.keyword | Substrates | eng |
dc.subject.keyword | Surface morphology | eng |
dc.subject.keyword | X ray diffraction | eng |
dc.subject.keyword | AZ31B magnesium alloys | eng |
dc.subject.keyword | Electroless coating | eng |
dc.subject.keyword | Electroless Ni-P coating | eng |
dc.subject.keyword | Electroless Ni-P depositions | eng |
dc.subject.keyword | Electroless ni-p plating | eng |
dc.subject.keyword | Gravimetric measurements | eng |
dc.subject.keyword | Open circuit potential measurements | eng |
dc.subject.keyword | Rutherford backscattering spectrometry | eng |
dc.subject.keyword | Magnesium | eng |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.abstract | In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V. | eng |
dc.creator.affiliation | Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, Colombia | spa |
dc.creator.affiliation | Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombia | spa |
dc.creator.affiliation | Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombia | spa |
dc.creator.affiliation | UK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United Kingdom | spa |
dc.creator.affiliation | Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdom | spa |
dc.relation.ispartofes | Surface and Coatings Technology | spa |
dc.relation.references | Cao, F., Song, G.L., Atrens, A., Corrosion and passivation of magnesium alloys Corros. Sci., 111, pp. 835-845 | spa |
dc.relation.references | Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution Corros. Sci., 111, pp. 288-301 | spa |
dc.relation.references | Atrens, A., Song, G.L., Liu, M., Shi, Z., Cao, F., Dargusch, M.S., Review of recent developments in the field of magnesium corrosion Adv. Eng. Mater., 17, pp. 400-453 | spa |
dc.relation.references | Esmaily, M., Blücher, D.B., Svensson, J.E., Halvarsson, M., Johansson, L.G., New insights into the corrosion of magnesium alloys — the role of aluminum Scr. Mater., 115, pp. 91-95 | spa |
dc.relation.references | Shu, X., Wang, Y., Liu, C., Aljaafari, A., Gao, W., Double-layered Ni-P/Ni-P-ZrO2 electroless coatings on AZ31 magnesium alloy with improved corrosion resistance Surf. Coat. Technol., 261, pp. 161-166 | spa |
dc.relation.references | Lee, J., Chung, W., Jung, U., Kim, Y., Direct nickel electrodeposition on magnesium alloy in pyrophosphate electrolyte Surf. Coat. Technol., 205, pp. 4018-4023 | spa |
dc.relation.references | Selvi, V.E., Chatterji, P., Subramanian, S., Balaraju, J.N., Autocatalytic duplex Ni–P/Ni–W–P coatings on AZ31B magnesium alloy Surf. Coat. Technol., 240, pp. 103-109 | spa |
dc.relation.references | Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings Surf. Coat. Technol., 304, pp. 167-178 | spa |
dc.relation.references | Correa, E., Zuleta, A.A., Guerra, L., Gómez, M.A., Castaño, J.G., Echeverría, F., Liu, H., Thompson, G.E., Coating development during electroless Ni-B plating on magnesium and AZ91D alloy Surf. Coat. Technol., 232, pp. 784-794 | spa |
dc.relation.references | Zuleta, A.A., Correa, E., Sepúlveda, M., Guerra, L., Castaño, J.G., Echeverría, F., Skeldon, P., Thompson, G.E., Effect of NH4HF2 on deposition of alkaline electroless Ni-P coatings as a chromium-free pre-treatment for magnesium Corros. Sci., 55, pp. 194-200 | spa |
dc.relation.references | Liu, Z., Electroless Nickel-Phosphorus (EN) Coatings on Magnesium and Magnesium Alloys (Doctoral thesis) University of AucklandHu, R., Su, Y., Liu, H., Deposition behaviour of nickel phosphorus coating on magnesium alloy in a weak corrosive electroless nickel plating bath J. Alloys Compd., 658, pp. 555-560 | spa |
dc.relation.references | Dong, X., Handbook of Manufacturing Engineering and Technology, pp. 1-21. , A. Nee Springer London London | spa |
dc.relation.references | Yang, X., Wang, G., Dong, G., Gong, F., Zhang, M., Rare earth conversion coating on Mg–8.5Li alloys J. Alloys Compd., 487, pp. 64-68 | spa |
dc.relation.references | Wang, G., Zhang, M., Wu, R., Molybdate and molybdate/permanganate conversion coatings on Mg–8.5Li alloy Appl. Surf. Sci., 258, pp. 2648-2654 | spa |
dc.relation.references | Jiang, B.L., Ge, Y.F., 7 - Micro-arc Oxidation (MAO) to Improve the Corrosion Resistance of Magnesium (Mg) Alloys , pp. 163-196. , Woodhead Publishing Series in Metals and Surface Engineering, edited by Guang-Ling Song, Woodhead Publishing Series in Metals and Surface Engineering, Corrosion Prevention of Magnesium AlloysWhite, L., Koo, Y., Neralla, S., Sankar, J., Yun, Y., Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO) Mater. Sci. Eng. B, 208, pp. 39-46 | spa |
dc.relation.references | Hoche, H., Groß, S., Oechsner, M., Development of new PVD coatings for magnesium alloys with improved corrosion properties Surf. Coat. Technol., 259, pp. 102-108. , (Part A) | spa |
dc.relation.references | Sivapragash, M., Kumaradhas, P., Stanly Jones Retnam, B., Felix Joseph, X., Pillai, U.T.S., Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy Mater. Des., 90, pp. 713-722 | spa |
dc.relation.references | Cui, Z., Shi, H., Wang, W., Xu, B., Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling Trans. Nonferrous Metals Soc. China, 25, pp. 1446-1453 | spa |
dc.relation.references | Mallory, G.O., Hajdu, J.B., Electroless Plating -Fundamentals and Applications William Andrew Publishing/NoyesZuleta, A.A., Correa, E., Villada, C., Sepúlveda, M., Castaño, J.G., Echeverría, F., Comparative study of different environmentally friendly (chromium-free) methods for surface modification of pure magnesium Surf. Coat. Technol., 205, pp. 5254-5259 | spa |
dc.relation.references | Wu, L., Zhao, J., Xie, Y., Yang, Z., Progress of electroplating and electroless plating on magnesium alloy Trans. Nonferrous Metals Soc. China, 20, pp. s630-s637 | spa |
dc.relation.references | Shu, X., Wang, Y., Peng, J., Yan, P., Yan, B., Fang, X., Xu, Y., Recent progress in electroless ni coatings for magnesium alloys Int. J. Electrochem. Sci., 10, pp. 1261-1273 | spa |
dc.relation.references | Liu, Z., Gao, W., The effect of substrate on the electroless nickel plating of Mg and Mg alloys Surf. Coat. Technol., 200, pp. 3553-3560 | spa |
dc.relation.references | Liu, X., Liu, Z., Liu, P., Xiang, Y., Hu, W., Ding, W., Properties of fluoride film and its effect on electroless nickel deposition on magnesium alloys Trans. Nonferrous Metals Soc. China, 20, pp. 2185-2191 | spa |
dc.relation.references | Qin, T., Ma, L., Yao, Y., Ni, C., Zhao, X., Ding, Y., An in situ measure method to study deposition mechanism of electroless Ni-P plating on AZ31 magnesium alloy Trans. Nonferrous Metals Soc. China, 21, pp. 2790-2797 | spa |
dc.relation.references | Dhinakaran, R., Elansezhian, R., Lalitha, A.A., Effect of nanoadditives with surfactant on the surface characteristics of electroless nickel coating on magnesium-based composites reinforced with MWCNT Adv. Tribol., 2013 | spa |
dc.relation.references | Sahoo, P., Optimization of electroless Ni-P coatings based on multiple roughness characteristics Surf. Interface Anal., 40, pp. 1552-1561 | spa |
dc.relation.references | Vitry, V., Sens, A., Kanta, A.F., Delaunois, F., Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel Appl. Surf. Sci., 263, pp. 640-647 | spa |
dc.relation.references | Xavior, M.A., Yarlagadda, P.K.D.V., Gadhari, P., Sahoo, P., Influence of process parameters on multiple roughness characteristics of Ni–P–TiO2 composite coatings Procedia Eng., 97, pp. 439-448 | spa |
dc.relation.references | Doolittle, L.R., Algorithms for the rapid simulation of Rutherford backscattering spectra Nucl. Instrum. Methods Phys. Res., Sect. B, 9, pp. 344-351 | spa |
dc.relation.references | Vitry, V., Kanta, A.-F., Delaunois, F., Initiation and formation of electroless nickel–boron coatings on mild steel: effect of substrate roughness Mater. Sci. Eng. B, 175, pp. 266-273 | spa |
dc.relation.references | Ambat, R., Zhou, W., Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters Surf. Coat. Technol., 179, pp. 124-134 | spa |
dc.relation.references | Song, G., Atrens, A., Understanding magnesium corrosion—a framework for improved alloy performance Adv. Eng. Mater., 5, pp. 837-858 | spa |
dc.relation.references | Sevonkaev, I., Goia, D.V., Matijević, E., Formation and structure of cubic particles of sodium magnesium fluoride (neighborite) J. Colloid Interface Sci., 317, pp. 130-136 | spa |
dc.relation.references | Zhao, D., Zhou, L., Du, Y., Wang, A., Peng, Y., Kong, Y., Sha, C., Zhang, W., Structure, elastic and thermodynamic properties of the Ni–P system from first-principles calculations Calphad, 35, pp. 284-291 | spa |
dc.relation.references | Lee, S.B., Kim, Y.M., Signature of surface energy dependence of partial dislocation slip in a gold nanometer-sized protrusion Scr. Mater., 64, pp. 1125-1128 | spa |
dc.relation.references | Bagheri, S., Guagliano, M., Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys Surf. Eng., 25, pp. 3-14 | spa |
dc.relation.references | Deendarlianto, Y.T., Kohno, M., Hidaka, S., Wakui, T., Majid, A.I., Kuntoro, H., Indarto, Widyaparaga, A., The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces Int. J. Heat Mass Transf., 101, pp. 1217-1226 | spa |
dc.relation.references | Zhou, C., Yang, Y., Zhang, J., Xu, S., Wu, S., Hu, H., Chen, B., Zhao, X., Enhanced electrochemical performance of the counterelectrode of dye sensitized solar cells by sandblasting Electrochim. Acta, 54, pp. 5320-5325 | spa |
dc.relation.references | Bradford, P.M., Case, B., Dearnaley, G., Turner, J.F., Woolsey, I.S., Papers presented at a conference on ion implantation and ion beam analysis techniques in corrosion studies: ion beam analysis of corrosion films on a high magnesium alloy (Magnox Al 80) Corros. Sci., 16, pp. 747-766 | spa |
dc.relation.references | Turhan, C.M., Surface Modification of mg and Mg Alloys https://opus4.kobv.de/opus4-fau/frontdoor/index/index/year/2012/docId/2106, Erlangen-Nürnberg Universität Erlangen-NürnbergWhitten, K., Davis, R., Peck, L., Stanley, G., Chemistry, 10th Editi Brooks Cole BostonZhang, Z., Yu, G., Ouyang, Y., He, X., Hu, B., Zhang, J., Wu, Z., Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D Appl. Surf. Sci., 255, pp. 7773-7779 | spa |
dc.relation.references | Makar, G.L., Kruger, J., Corrosion of magnesium Int. Mater. Rev., 38. , (138–) | spa |
dc.relation.references | Zhang, Y.Z., Wu, Y.Y., Yao, M., Characterization of electroless nickel with low phosphorus J. Mater. Sci. Lett., 17, pp. 37-40 | spa |
dc.relation.references | Wang, L., Li, J., Liu, H., A simple process for electroless plating nickel—phosphorus film on wood veneer Wood Sci. Technol., 45, pp. 161-167 | spa |
dc.relation.references | El-Taib Heakal, F., Fekry, A.M., Fatayerji, M.Z., Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions Electrochim. Acta, 54, pp. 1545-1557 | spa |
dc.relation.references | Verdier, S., van der Laak, N., Delalande, S., Metson, J., Dalard, F., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS Appl. Surf. Sci., 235, pp. 513-524 | spa |
dc.relation.references | Schlesinger, M., Meng, X., Snyder, D.D., The microstructure and electrochemical properties of electroless zinc-nickel-phosphorus alloy J. Electrochem. Soc., 138, pp. 406-410 | spa |
dc.relation.references | Lian, J.S., Li, G.Y., Niu, L.Y., Gu, C.D., Jiang, Z.H., Jiang, Q., Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy Surf. Coat. Technol., 200, pp. 5956-5962 | spa |
dc.relation.references | Chen, J., Yu, G., Hu, B., Liu, Z., Ye, L., Wang, Z., A zinc transition layer in electroless nickel plating Surf. Coat. Technol., 201, pp. 686-690 | spa |
dc.relation.references | Abulsain, M., Berkani, A., Bonilla, F.A., Liu, Y., Arenas, M.A., Skeldon, P., Anodic oxidation of Mg–Cu and Mg–Zn alloys Electrochim. Acta, 49, pp. 899-904 | spa |
dc.relation.references | Němcová, A., Galal, O., Skeldon, P., Kuběna, I., Šmíd, M., Briand, E., Vickridge, I., Habazaki, H., Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents Electrochim. Acta, 219, pp. 28-37 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |