Mostrar el registro sencillo del ítem

dc.creatorGloria E.C.spa
dc.creatorEderley V.spa
dc.creatorGladis M.spa
dc.creatorCésar H.spa
dc.creatorJaime O.spa
dc.creatorOscar A.spa
dc.creatorJosé I.U.spa
dc.creatorFranklin J.spa
dc.date.accessioned2017-12-19T19:36:52Z
dc.date.available2017-12-19T19:36:52Z
dc.date.created2017
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/11407/4382
dc.description.abstractThe synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.eng
dc.language.isoeng
dc.publisherInstitute of Physics Publishingspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021887156&doi=10.1088%2f1742-6596%2f850%2f1%2f012023&partnerID=40&md5=79ecba148e8d8ca3472a80e6fcc9d807spa
dc.sourceScopusspa
dc.titleSynthesis of Silver nanoparticles (AgNPs) with Antibacterial Activityspa
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationGloria, E.C., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombiaspa
dc.contributor.affiliationEderley, V., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombiaspa
dc.contributor.affiliationGladis, M., Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationCésar, H., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombiaspa
dc.contributor.affiliationJaime, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationOscar, A., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationJosé, I.U., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.contributor.affiliationFranklin, J., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombiaspa
dc.identifier.doi10.1088/1742-6596/850/1/012023
dc.subject.keywordAntibacterial Activityeng
dc.subject.keywordmesophilic bacteriaeng
dc.subject.keywordnanomaterial synthesiseng
dc.subject.keywordSilver Nanoparticuleseng
dc.subject.keywordBacteriaeng
dc.subject.keywordBactericideseng
dc.subject.keywordIonic liquidseng
dc.subject.keywordMetal nanoparticleseng
dc.subject.keywordNanoparticleseng
dc.subject.keywordNanostructured materialseng
dc.subject.keywordParticle sizeeng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordSolutionseng
dc.subject.keywordSurface plasmon resonanceeng
dc.subject.keywordSynthesis (chemical)eng
dc.subject.keywordUltraviolet visible spectroscopyeng
dc.subject.keywordAnti-bacterial activityeng
dc.subject.keywordBactericidal activityeng
dc.subject.keywordChemical reduction methodseng
dc.subject.keywordMesophilic bacteriaeng
dc.subject.keywordNanoparticuleseng
dc.subject.keywordSilver nanoparticleseng
dc.subject.keywordSilver nanoparticles (AgNps)eng
dc.subject.keywordUV visible spectroscopyeng
dc.subject.keywordSilvereng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd.eng
dc.creator.affiliationDepartamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombiaspa
dc.creator.affiliationFacultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationInstituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombiaspa
dc.creator.affiliationCentro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombiaspa
dc.relation.ispartofesJournal of Physics: Conference Seriesspa
dc.relation.ispartofesJournal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017spa
dc.relation.referencesContescu, C. I., & Putyera, K. (2009). Dekker Encyclopedia of Nanoscience and Nanotechnology, 1-6.spa
dc.relation.referencesDang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1) doi:10.1088/2043-6262/2/1/015009spa
dc.relation.referencesGuzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111.spa
dc.relation.referencesKuisma, M., Sakko, A., Rossi, T. P., Larsen, A. H., Enkovaara, J., Lehtovaara, L., & Rantala, T. T. (2015). Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B - Condensed Matter and Materials Physics, 91(11) doi:10.1103/PhysRevB.91.115431spa
dc.relation.referencesLink, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi:10.1080/01442350050034180spa
dc.relation.referencesMarambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551. doi:10.1007/s11051-010-9900-yspa
dc.relation.referencesSaion, E., Gharibshahi, E., & Naghavi, K. (2013). Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. International Journal of Molecular Sciences, 14(4), 7880-7896. doi:10.3390/ijms14047880spa
dc.relation.referencesShenashen, M. A., El-Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293-316. doi:10.1002/ppsc.201300181spa
dc.relation.referencesSiegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. doi:10.1016/j.procbio.2005.01.025spa
dc.relation.referencesWang, J. -., Wen, L. -., Wang, Z. -., & Chen, J. -. (2006). Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics, 96(1), 90-97. doi:10.1016/j.matchemphys.2005.06.045spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem