Mostrar el registro sencillo del ítem

Non-conventional absorbers: sustainable alternatives for wastewater treatment;
Adsorventes não convencionais, alternativas sustentáveis para o tratamento de águas residuais

dc.contributor.authorValladares-Cisneros, Maria Guadalupe
dc.contributor.authorValerio Cárdenas, Cintya
dc.contributor.authorde la Cruz Burelo, Patricia
dc.contributor.authorMelgoza Alemán, Rosa María
dc.date.accessioned2018-04-13T21:18:18Z
dc.date.available2018-04-13T21:18:18Z
dc.date.created2017-12-31
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/4679
dc.description.abstractSe presenta una revisión sobre los adsorbentes no-convencionales utilizados para la remoción de contaminantes en el agua. Se describirán brevemente los adsorbentes convencionales para distinguir a los no-convencionales. Los adsorbentes convencionales son aquellos materiales naturales o sintéticos los cuales, para ser empleados, deben recibir un tratamiento para activarse, como el carbono, las arcillas, las membranas etc.; después de usarse estos materiales tienen la cualidad de poder ser regenerados. Los adsorbentes no-convencionales son materiales alternos (biopolímeros o partes de plantas); no necesariamente deben recibir un tratamiento previo para activarse; sin embargo, su activación mejora su capacidad de adsorción. Las fuentes estudiadas para la obtención de materiales empleados como adsorbentes no-convencionales han sido los residuos agroindustriales y de la industria alimenticia y especies vegetales cuya aplicación es restringida o no tienen aplicación. Han sido diferentes los estudios que demuestran que el empleo de materiales naturales como adsorbentes no-convencionales permite reducir la carga orgánica de un efluente contaminado con metales, colorantes, pesticidas y algunos otros compuestos orgánicos denominados emergentes. Las áreas de estudio para los materiales no-convencionales surgen como una necesidad en el diseño de procesos sustentables para el tratamiento de aguas residuales, por lo que su estudio y revisión son de especial interés para profundizar y proponer alternativas acordes con las necesidades existentes.spa
dc.description.abstractThis article shows a revision of the non-conventional absorbers employed for the removal of water pollutants. A brief description is made on the conventional absorbers in order to distinguish them from the non-conventional ones. Conventional absorbers are those natural or synthetic materials which employment is contingent with a treatment process so that they can be activated, such as carbon, clays, membranes, etc. After using these materials, they are able to be regenerated. Non-conventional absorbers are alternate materials (biopolymers or parts of plants); they should not necessarily be subject to a previous treatment to be activated; however, activation improves their absorption capacity. Sources studied for obtaining the materials employed as non-conventional absorbers include agroindustrial wastes, food industry wastes, and plant species which application is restricted or has no application at all. Different studies have shown that the employment of natural materials as non-conventional absorbers allows minimizing the organic discharge of a river contaminated with metals, dyes, pesticides, and other organic compounds known as emerging compounds. The fields of study for non-conventional materials emerge as a need for the design of sustainable process for the wastewater treatment; for this reason, the study and revision of non-conventional materials are of special interest to go deeper and propose alternative according to the existing needs.spa
dc.description.abstractApresenta-se uma revisão sobre os adsorventes não convencionais utilizados para a remoção de poluentes na água. São descritos brevemente os adsorventes convencionais para diferenciá-los dos não convencionais. Aqueles são materiais naturais ou sintéticos que, para serem empregados, devem receber um tratamento para ativar-se, como carbono, argila, membranas, entre outros. Os não convencionais são materiais alternativos (biopolímeros ou partes de plantas); não necessariamente devem receber um tratamento prévio para ativar-se, mas sua ativação melhora a capacidade de adsorção. As fontes estudadas para obter materiais empregados como adsorventes não convencionais são os resíduos agroindustriais e da indústria alimentar, bem como espécies vegetais cuja aplicação é restringida ou não têm aplicação. São diferentes os estudos que demonstram que o emprego de materiais naturais como adsorventes não convencionais permite reduzir a carga orgânica de um efluente poluído com metais, corantes, pesticidas e outros componentes orgânicos denominados emergentes. As áreas de estudo para os materiais não convencionais surgem como uma necessidade no desenho de processos sustentáveis para o tratamento de águas residuais, razão pela qual seu estudo e revisão são de especial interesse para propor alternativas concordantes com as necessidades existentes e aprofundar-se no tema.spa
dc.format.extentp. 55-73spa
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.relation.urihttp://revistas.udem.edu.co/index.php/ingenierias/article/view/1802
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRevista Ingenierías Vol. 16, Núm. 31 (2017): Julio-Diciembre; 55-73spa
dc.subjectIngeniería Ambiental, Biomaterialesspa
dc.subjectadsorbente convencionalspa
dc.subjectadsorbente no-convencionalspa
dc.subjectaguas residualesspa
dc.subjectmateriales naturalesspa
dc.subjecttratamiento sustentablespa
dc.subjectnon-conventional absorbersspa
dc.subjectsustainable treatmentspa
dc.subjectnatural materialsspa
dc.subjectwastewaterspa
dc.subjectconventional absorberspa
dc.subjectadsorvente convencional: adsorvente não convencionalspa
dc.subjectáguasspa
dc.titleAdsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residualesspa
dc.titleNon-conventional absorbers: sustainable alternatives for wastewater treatmentspa
dc.titleAdsorventes não convencionais, alternativas sustentáveis para o tratamento de águas residuaisspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doihttps://doi.org/10.22395/rium.v16n31a3
dc.relation.citationvolume16
dc.relation.citationissue31
dc.relation.citationstartpage55
dc.relation.citationendpage73
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degreesspa
dc.publisher.placeMedellínspa
dc.creator.affiliationValladares-Cisneros, Maria Guadalupe;Universidad Autónoma del Estado de Morelosspa
dc.creator.affiliationValerio Cárdenas, Cintya; Universidad Popular de la Chontalpaspa
dc.creator.affiliationde la Cruz Burelo, Patricia; Universidad Popular de la Chontalpaspa
dc.creator.affiliationMelgoza Alemán, Rosa María; Universidad Autónoma del Estado de Morelosspa
dc.relation.referencesM. F. Chaplin. “Water: its importance to life”. Biochem & Mol Biol Edu., vol. 29, n.° 2, pp. 54-59, February 2001spa
dc.relation.referencesR. Breslow. “The principles of and reasons for using water as a solvent for green chemistry. In Handbook of Green Chemistry. P. T. Anastas Editor. John Wiley and Sosn. Inc. pp. 1-30, March 2010.spa
dc.relation.referencesJ. Carabias, y R. Landa. “Agua, medio ambiente y sociedad. Hacia la gestión integral de los recursos hídricos en México”. México, D. F., Ed. UNAM, Colegio de México. Fundación Gonzalo Río Arronte. 2005.spa
dc.relation.referencesN. Yildiz, R. Gonulsena, H. Koyuncu, A. Calimi. “Adsorption of benzoic acid and hydroquinone by organically modified bentonites”. Colloids Surf A, 260, 87-94, June 2005.spa
dc.relation.referencesL-G. Yan, J. Wang, H-Q. Yu, Q. Wei, B. Du, X-Q. Shan. “Adsorption of benzoic acid by CTAB exchanged montmorillonite”. Appl Clay Sci, 37 (3-4), 226-230, January 2007.spa
dc.relation.referencesM. J. Gil, A. M. Soto, J. I. Usma, O. D. Gutiérrez. “Contaminantes emergentes en aguas, efectos y posibles tratamientos”. Producción + Limpia, vol. 7, n.° 2, pp. 52-73, julio-diciembre 2012.spa
dc.relation.referencesR. Vallejo-Rodríguez, M. A. Murillo-Tovar, L. Hernández-Mena, H. Saldarriaga-Noreña, A. López-López. “Compuestos emergentes: Implementación de métodos analíticos para extraer y cuantificar 17β-estradio, 17 β-etinilestradiol, ibuprofeno y naproxeno en agua. Tecnología y Ciencias del Agua, vol. III, pp. 101-110, febrero-marzo 2012.spa
dc.relation.referencesB. C. Pan, Y. Xiong, A. M. Li, J. L. Chen, Q. X. Zhang, X. Y. Jin. “Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer”. React. Funct. Polym, vol. 53, n.° 2-3, pp. 63-72, december 2002.spa
dc.relation.referencesO. A. Titi and O. S. Bello. “An overview of low cost adsorbents for Copper (II) ions removal”. J. Biotechnol. & Biomater, vol. 5, n.° 1, pp 1-13, February 2015.spa
dc.relation.referencesN. Das, R. Vimala, P. Karthika. “Biosorption of heavy metals-An overview”. Indian journal of Biotechnology, vol. 7, n.° 2, pp. 159-169. 2008.spa
dc.relation.referencesE. S. Z. El-Ashtoukhy, N. K. Amina, O. Abdelwahab. “Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent”. Desalination, vol. 223, n.° 1, pp. 162-173, February 2008.spa
dc.relation.referencesK. S. W. Sing. “Characterization of porous materials: past, present and future”. Colloids Surf A: Physicochem. Eng. Asp., vol. 241, no. 1-3, pp. 3-7, July 2004.spa
dc.relation.referencesC. Nava-Ruiz, Y M. Méndez-Armenta. “Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio)”. Arch. Neurocienc., vol. 16, no. 3, pp. 140-147, julio-septiembre 2011.spa
dc.relation.referencesA. Mittal, L. Kurup, J. Mittal. “Freundlich and Langmuir adsorption isotherms and kinetics for the removal tartrazine from aqueous solutions using hen feathers”. J Hazard Mater, vol. 146, n,° 1-2, pp. 243-248, December 2007.spa
dc.relation.referencesT. Robinson, B. Chandran, P. Nigam. “Removal of dyes from a synthetic textile dye effluent by biosorption on Apple pomace and wheat Straw”. Water Res, vol. 36, n.° 11, pp. 2824-2830, June 2002.spa
dc.relation.referencesN. Kannan, M. M. Sundaram. “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons. A comparative study”. Dyes Pigments, vol. 51, n.° 1, pp. 25-40, September 2001.spa
dc.relation.referencesV. K. Gupta and Suhas. “Application of low-cost adsorbents for dye removal -A review“. J Environ Manage, vol. 90, n.° 8, pp. 2312-2342, June 2009.spa
dc.relation.referencesG. E. Walsh, L. H. Bahner and W. B. Horning. “Toxicity of textile mill effluents to freshwater and estuarine algae, crustaceans and fishes”. Environ. Pollut. A, vol. 21, n.° 3, pp. 169-179, March 1980.spa
dc.relation.referencesB. de Campos and M. A. Marin. “Azo dyes: Characterization and toxicity -A review-“. TLIST, vol. 2, n.° 2, pp. 85-103, April 2013.spa
dc.relation.referencesA. E. Ghaly, R. Ananthashankar, M. Alhattab and V. V. Ramakrishnan. “Production, characterization and treatment of textile effluents: A critical review”. J Chem Eng Process Technol., vol. 5, n.° 1, pp. 1-19, January 2014.spa
dc.relation.referencesF. M. Drumond Chequer, G. A. Rodrigues, E. R. Anastácio, J. Carvalho, M. V. Boldrin and D. Palma. “Textile dyes: dyeing process and environmental impact”. In Eco-friendly textile dyeing and finishing, Dr. Melih Gunay (Ed.), InTech, DOI: 10.5772/53659, pp. 151-176, January 2013.spa
dc.relation.referencesY. L. Pang and A. Z. Abdullah. “Current status of textile industry wastewater management and research progress in Malaysia: A review”. CLEAN- Soil, Air, Water, vol. 41, n.° 8, pp. 751-764, August 2013.spa
dc.relation.referencesA. Hasanbeigi and L. Price. “A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry”. J Clean Prod, vol. 95, pp. 30-44, May 2015.spa
dc.relation.referencesY. Fushiwaki, K. Uranob. “Adsorption of pesticides and their biodegraded products on clay minerals and soils”. J Health Sci, vol. 47, n.° 4, pp. 429-432, July 2001.spa
dc.relation.referencesJ. Rubio, F. Tessele. “Removal of heavy metal ions by adsorptive particulate flotation”. Miner Eng, vol. 10, n.° 7, pp. 671-679, July 1997.spa
dc.relation.referencesC. R. Silva, T. F. Gomes, G. C. R. M. Andrade, S. H. Monteiro, A. C. R. Dias E. G. Zagatto, V. L. Tornisielo. “Banana peel as an adsorbent for removing atrazine and ametryne from waters”. J Agric Food Chem, vol. 61, n.° 10, pp. 2358-2363, January 2013.spa
dc.relation.referencesS. E. Agarry, C. N. Owabor, A. O. Ajani. “Modified plantain peel as cellulose-based low-cost adsorbent for the removal of 2, 6-dichlorophenol from aqueous solution: adsorption isotherms, kinetic modeling, and thermodynamic studies”. Chem Eng Commun, vol. 200, n.° 8, pp. 1121-1147, March 2013.spa
dc.relation.referencesT. J. I. Edison, M. G. Sethuraman. “Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol”. Spectrochim Acta A Mol Biomol Spectrosc, vol. 104, pp. 262-264, March 2013.spa
dc.relation.referencesU. A. El-Nafaty, I. M. Muhammad, S. Abdulsalam. “Biosorption and kinetic studies on oil removal from produced water using banana peel”. Civil Environ Res, vol. 3, n.° 7, pp. 125-136, July 2013.spa
dc.relation.referencesA. Borhan, P. K. Hoong, M. F. Taha. “Biosorption of heavy metal ions, oil and grease from industrial waste water by banana peel”. Appl Mech Mater, vol. 625, pp. 749-752, September 2014.spa
dc.relation.referencesJ. Zou, X. Liu, W. Chai, X. Zhang, B. Li, Y. Wanga, and Y. Ma. “Sorption of oil from simulated seawater by fatty acid modified pomelo peel”. Desalin Water Treat, vol. 339, n.° 4, pp. 1-8, July 2014.spa
dc.relation.referencesA. K. Mehari, S. Gebremedhin and B. Ayele. “Effects of Bahir Dar textile factory effluents on the water quality of the head waters of Blue Nile River, Ethiopia”. Int. J Anal Chem., vol. 2015, Article ID 905247, pp. 1-7, November 2015.spa
dc.relation.referencesG. McDougall. “The physical nature and manufacture of activated carbon”. J S. Afr. Ins. Min. Metall, vol. 91, n.° 4, pp. 109-120, April 1991.spa
dc.relation.referencesR. Sivaraj, C. Namasivayam and K. Kadirvelu. “Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Management, vol. 21, n.° 1, pp. 105-110, January 2001spa
dc.relation.referencesM. Fomina and G. M. Gadd. “Biosorption: current perspectives on concept, definition and application”. Bioresour. Technol., vol. 160, pp. 3-14, May 2014.spa
dc.relation.referencesP. A. M. Mourao, O. J. M. Carrot and M. M. L. Ribeiro Carrot. “Application of different equations to adsorption isotherms of phenolic compounds on activated carbons prepared from cork”. Carbon, vol. 44, n.° 12, pp. 2422-2429, October 2006.spa
dc.relation.referencesS. Nethaji, A. Sivasamy and A. B. Mandal. “Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass”. Int. J. Environ. Sci. Technol., vol., 10, n.° 2, pp. 231-242, March 2013.spa
dc.relation.referencesB. H. Hameed and M. I. El-Khaiary. “Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modelling” J Hazard Mater., vol. 159, n.° 2-3, pp. 574-579, February 2008.spa
dc.relation.referencesF. N. Memon and S. Memon. “Sorption and desorption of basic dyes from industrial wastewater using calix[4]arene based impregnated material” Separation Sci and Technol., vol. 50, n.° 8, pp. 1135-1146, January 2015.spa
dc.relation.referencesJ. Tao and A. M. Rappe. “Physical Adsorption: Theory of van der Waals Interactions between particles and clean surfaces”. Physic. Rev. Lett., vol. 112, n.° 10, pp. 106101, March 2014.spa
dc.relation.referencesP. D. Pathak, S. A. Mandavgane and B. D. Kulkarni. “Characterizing fruit and vegetable peels as bioadsorbents”. Curr Sci., vol. 110, n.° 11, pp. 2114-2123, June 2016.spa
dc.relation.referencesS. Patel. “Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies”. Rev Environ Sci Bio/Technol, vol. 11, n.° 4, pp. 365-380, December 2012.spa
dc.relation.referencesA. Bhatnagar, V. J. Vilar, C. M. Botelho and R. A. Boaventura. “Coconut-based biosorbents for water treatment-a review of the recent literatura”. Adv Colloid Interface Sci, vol. 160, n.° 1-2, pp. 1-15, October 2010.spa
dc.relation.referencesH. R. Losada, L. L. Rodríguez, J. C. Zorrilla and J. M. Vargas. “The use of organic waste from animals and plants as important input to urban agriculture in México City”. Int J Appl Sci Technol, vol. 5, n.° 1, pp. 38-44, February 2015.spa
dc.relation.referencesH. Losada, J. Cortes, J. Rivera and J. Vargas. “Recycling of solid wastes in Mexico City in livestock and agricultural production systems as a sustainable alternative”. Field Actions Science Reports. The Journal of Field Actions, vol. 5, pp. 1-11, 2011.spa
dc.relation.referencesP. Sharma, H. Kaur, M. Sharma and V. Sahore. “A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste”. Environ Monit Assess, vol. 183, n.° 1, pp. 151-195, March 2011.spa
dc.relation.referencesJ. Lehmann, J. Gaunt and M. Rondon. “Bio-char sequestration in terrestrial ecosystems - a review”, Mitig. Adapt. Strateg. Glob. Chang., vol. 11, n.° 2, pp. 395-419, March 2006.spa
dc.relation.referencesD. Mohan, A. Sarswat, Y. S. Ok and C. U. Pittman. “Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review”, Bioresour. Technol., vol. 160, special n.°, pp. 191-202, May 2014.spa
dc.relation.referencesD. Woolf, J. E. Amonette, F. A. Street-Perrott, J. Lehmann and S. Joseph. “Sustainable biochar to mitigate global climate change”, Nat. Commun., vol. 1, n.° 5, pp. 56, July 2010.spa
dc.relation.referencesA. D. Zapata, C. A. Escobar, S. F. Cavalitto and R. Hours. “Evaluación de la capacidad de solubilización de pectina de cáscara de limón usando protopectinasa-se”. Vitae, vol. 16, n.° 1, pp. 67-74, Enero 2009.spa
dc.relation.referencesR. Sthornvit and N. Pitak. “Oxygen permeability and mechanical properties of banana films”. Food Res Int., vol. 40, n.° 3, pp. 365-370, April 2007.spa
dc.relation.referencesV. Coma. “Polysaccharide-based biomaterials with antimicrobial and antioxidant properties”. Polímeros, vol. 20, n.° 2, pp. 1-12, marzo-abril 2010.spa
dc.relation.referencesM. L. Fishman and P. H. Cooke. “The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM”. Carbohydr. Res., vol. 344, n.° 14, pp. 1792-1797, September 2009.spa
dc.relation.referencesS. Yoo, M. L. Fishman, A. T.Hotchkiss and H. G. Lee. “Viscometric behavior of high-methoxy and low-methoxy pectin solutions”. Food Hydrocolloids, vol. 20, n.° 1, pp. 62-67, March 2006.spa
dc.relation.referencesK. K. Woo, Y. Y. Chong, S. K. Li Hiong and P. Y. Tang. “Pectin extraction and characterization from red dragon fruit (Hylocereus polyrhizus): A preliminary study”. J Biol. Sci., vol. 10, n.° 7, pp. 631-636, October 2010.spa
dc.relation.referencesH. Ueno, M. Tanak, M. Hosino, M. Sasaki and M. Goto. “Extraction of valuable compounds from the albedo of Citrus junos using subcritical water”. Sep. Purif. Technol., vol. 62, n.° 3, pp. 513-516, September 2008.spa
dc.relation.referencesA. Chowdhury, A. Bhowal and S. Datta. “Equilibrium, thermodynamic and kinetic studies for removal of copper (II) from Aqueous solution by onion and garlic skin”. Water, vol. 4, pp. 37-51, November 2012.spa
dc.relation.referencesS. Saber-Samandari and J. Heydaripour. “Onion membrane: an efficient adsorbent for decoloring of wastewater”. J Environ. Health Sci. Eng., vol. 13, n.° 16, pp. March 2015.spa
dc.relation.referencesL. B. L. Lim, N. Priyantha, D. T. B. Tennakoon, H. I. Chieng, M. K. Dahri and M. Suklueng. “Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies”. Arabian J Chem, Doi: 10.1016/j.arabjc.2013.12.018, January 2014.spa
dc.relation.referencesK. M. Sreenivas, M. B. Inarkar, S. V. Gokhale and S. S. Lele. “Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: equilibrium and column studies”. J Environ Chem Eng, vol. 2, n.° 1, pp. 455-462, March 2014.spa
dc.relation.referencesM. Iqbal, A. Saeed and S. I. Zafar. “FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste”. J Hazard Mater, vol. 164, n.° 1, pp. 161-171, May 2009.spa
dc.relation.referencesG. E. Do Nascimento, M. M. Menezes, N. Campos, O. R. Sá Da Rocha and V. Lins Da Silva. “Adsorption of azo dyes using peanut hull and orange peel: a comparative study”. Environ Technol, vol. 35, n.° 11, pp. 1436-1453, 2014.spa
dc.relation.referencesT. Smitha, T. Santhi, A. L. Prasad and S. Mononmani. “Cucumis sativus used as adsorbent for the removal dyes from aqueous solution”. Arabian J Chem., vol. 4, pp. August 2012.spa
dc.relation.referencesN. Priyantha, L. B. L. Lim and M. K. Dahri. “Dragon fruit skin as a potential biosorbent for the removal of methylene blue dye from aqueous solution”. Int Food Res J., vol. 22, n.° 5, pp. 2141-2148, September – October 2015.spa
dc.relation.referencesC. Palma, E. Contreras, J. Urra and M. J. Martínez. “Eco-friendly technologies based on banana peel use for the decolourization of the dyeing process wastewater”. Waste Biomass Valorization, vol. 2, n.° 2, pp. 77-86, November 2011.spa
dc.relation.referencesM. Thirumavalavan, Y. L. Lai, L. C. Lin and J. F. Lee. “Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution Langmuir adsorption isotherms”. J Chem Eng Data, vol. 55, n.° 3, pp. 1186-1192, October 2010.spa
dc.relation.referencesA. Gilioli, M. Cavejon and M. G. N. Quadri. “C. hildmannianus peel for protein adsorption”. Chem Eng Trans, vol. 32, pp. 1099-1104, June 2013spa
dc.relation.referencesA. Bhatnagar and A. K. Minocha. “Adsorptive removal of 2, 4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement”. J Hazard Mater, vol. 168, n.° 2-3, pp. 1111-1117, September 2009.spa
dc.relation.referencesF. Güzel, Ö. Aksoy and G. Akkaya. “Application of pomegranate (Punica granatum) pulp as a new biosorbent for the removal of a model basic dye (methylene blue)”. World Appl Sci J., vol. 20, n.° 7, pp. 965-975, January 2012.spa
dc.relation.referencesF. Deniz. “Adsorption properties of low-cost biomaterial derived from Prunus amygdalus L. for dye removal from water”. The Scientific World Journal, vol. 2013, Article ID 961671, pp. 1-8, June 2013.spa
dc.relation.referencesR. A. K. Rao and S. Ikram, “Sorption studies of Cu (II) on gooseberry fruit (Emblica officinalis) and its removal from electroplating wastewater”. Desalination, vol. 277, n.° 1-3, pp. 390-398, August 2011.spa
dc.relation.referencesB. Jeyagowri and R. T. Yamuna. “Biosorption of Methylene blue from aqueous solutions by modified mesoporous Simarouba glauca seed shell powder”. Global NEST J., vol. 17, n.° 4, pp. 701-715, November 2015spa
dc.relation.referencesF. Mutongo, O. Kuipa and P. K. Kuipa. “Removal of Cr(VI) from aqueous solutions using powder of potato peelings as a low cost sorbent”. Bioinorg Chem Appl, vol. 2014, Article ID 973153, pp. 1-7, June 2014.spa
dc.relation.referencesC. Sirilamduan, C. Umpuch and P. Kaewsarn. “Removal of copper from aqueous solutions by adsorption using modify Zalacca edulis peel modify. Songklanakarin J Sci Technol, vol. 33, n.° 6, pp. 725-732, Nov-Dec. 2011spa
dc.relation.referencesD. Zhou, L. Zhang, J. Zhou and S. Guo. “Development of a fixed-bed column with cellulose/ chitin beads to remove heavy-metal ions”. J Appl Polym Sci, vol. 94, n.° 2, pp. 684-691, Aug 2004.spa
dc.relation.referencesL. Giraldo, M. Bastidas-Barranco and J. C. Moreno-Pirajan. “Preparation of carbon monoliths from orange peel for NOx retention”. Orient J Chem., vol. 30, pp. 1517-1528, 2014.spa
dc.relation.referencesG. K. Gupta, S. De, A. Franco, A. M. Balu and R. Luque. “Sustainable biomaterials: Current trends, challenges and applications”. Molecules, vol. 21, n.° 48, pp. 1-11, January 2016.spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científicospa
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International