Mostrar el registro sencillo del ítem

Controle preditivo/adaptativo de sistemas complexos utilizando técnicas de engenharia neural;
Control predictivo/adaptativo de sistemas complejos utilizando técnicas de ingeniería neuronal

dc.contributor.authorGallardo Arancibia, José
dc.contributor.authorAyala Bravo, Claudio
dc.contributor.authorCastro Castro, Rubén
dc.date.accessioned2019-11-07T15:03:03Z
dc.date.available2019-11-07T15:03:03Z
dc.date.created2018-03-15
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/5513
dc.description.abstractThe design and implementation of a predictive/adaptive control system is presented, using neural engineering techniques to control a non-linear MIMO system in order to control, at a later stage, the temperature and level in a non-linear conical plant. Preliminarily, conventional control structures were tested, which gave rise to the need to test intelligent control structures that allow the control objectives to be met more effectively. The process begins with the experimentation of different neuronal control structures, and then escalates to a predictive/adaptive neuronal control system. The results achieved at the simulation level, testing the proposed design on mathematical models of non-linear MIMO systems, were satisfactory and met the control objectives established, therefore, in the next stage of the project, the experimentation is estimated in the real plant under study.eng
dc.description.abstractApresenta-se a criação e a implementação de um sistema de controle preditivo/adaptativo utilizando técnicas de engenharia neural para controlar um sistema MIMO não linear com o objetivo de controlar, em uma etapa posterior, a temperatura e o nível em uma planta não linear de tipo cônica. Preliminarmente, estruturas de controle convencional foram ensaiadas, o que fez com que surgisse a necessidade de testar estruturas e controle inteligente que permitissem cumprir os objetivos de controle de forma mais eficaz. O processo começa com a experimentação de diferentes estruturas de controle neural, para depois escalar em direção a um sistema de controle neural preditivo/adaptativo. Os resultados alcançados na simulação, ensaiando o desenho proposto sobre modelos matemáticos de sistemas MIMO não lineares, foram satisfatórios e cumpriram os objetivos de controle estabelecidos, portanto, na seguinte etapa do projeto, estima-se realizar a experimentação na planta real em estudo.por
dc.description.abstractSe presenta el diseño e implementación de un sistema de control predictivo/adaptativo, utilizando técnicas de ingeniería neuronal para controlar un sistema MIMO no lineal con el objeto de controlar, en una etapa posterior, la temperatura y el nivel en una planta no lineal de tipo cónica. Preliminarmente, se ensayaron estructuras de control convencional lo que hizo surgir la necesidad de probar estructuras de control inteligente que permitan cumplir más eficazmente con los objetivos de control. El proceso se inicia con la experimentación de diferentes estructuras de control neuronal, para luego escalar hacia un sistema de control neuronal predictivo/adaptativo. Los resultados logrados a nivel simulación, ensayando el diseño propuesto sobre modelos matemáticos de sistemas MIMO no lineales, fueron satisfactorios y cumplieron los objetivos de control establecidos, por tanto, en la siguiente etapa del proyecto, se estima la experimentación en la planta real en estudio.spa
dc.format.extentp. 157-172spa
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/2196
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 17 Núm. 33 (2018): Julio-Diciembre; 157-172spa
dc.subjectNeuronal engineeringeng
dc.subjectIdentificationeng
dc.subjectPredictive controleng
dc.subjectAdaptive controleng
dc.subjectNon-linear MIMO systemseng
dc.subjectEngenharia neuralpor
dc.subjectIdentificaçãopor
dc.subjectControle preditivopor
dc.subjectControle adaptativapor
dc.subjectSistemas MIMO não linearespor
dc.subjectIngeniería neuronalspa
dc.subjectIdentificaciónspa
dc.subjectControl predictivospa
dc.subjectControl adaptativospa
dc.subjectSistemas MIMO no linealesspa
dc.titlePredictive/Adaptive Control of Complex Systems Using Neural Engineering Techniqueseng
dc.titleControle preditivo/adaptativo de sistemas complexos utilizando técnicas de engenharia neuralpor
dc.titleControl predictivo/adaptativo de sistemas complejos utilizando técnicas de ingeniería neuronalspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.22395/rium.v17n33a8
dc.relation.citationvolume17
dc.relation.citationissue33
dc.relation.citationstartpage157
dc.relation.citationendpage172
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.placeMedellínspa
dc.creator.affiliationGallardo Arancibia, José; Universidad Católica del Nortespa
dc.creator.affiliationAyala Bravo, Claudio; Universidad de Antofagastaspa
dc.creator.affiliationCastro Castro, Rubén; Universidad Arturo Pratspa
dc.relation.references[1] A. Conradie, C. Aldrich, “Neurocontrol of a multi-effect batch distillation pilot plant based on evolutionary reinforcement learning,” Chemical Engineering Science, vol. 65, N.° 5, pp. 1627-1643, 2010.spa
dc.relation.references[2] M. Bazaraa, H. Sherali, C.M. Shetty, Nonlinear programming: theory and Algorithms, 3.a ed., Nueva Jersey: Wiley Interscience, 2006, pp. 872.spa
dc.relation.references[3] S. Chen, S. A. Billings, “Representations of non-linear systems: the NARMAX model,” International Journal of Control, vol. 49, N.° 3, pp. 1013-1032, 1988.spa
dc.relation.references[4] H. González, M.S. Dutra, O. Lengerke, “Identification and modeling for non-linear dynamic system using neural networks type MLP,” presentado en Proceedings of the 2009 Euro American Conference on Telematics and Information Systems: New Opportunities to increase Digital Citizenship, Praga, junio 03-05, 2009.spa
dc.relation.references[5] R. Hecht-Nielsen, Neurocomputing, Boston: Ed. Addison Wesley, 1988, pp. 433.spa
dc.relation.references[6] J. Vojtesek, P. Dostal, “Adaptive control of water level in real model of water tank, Process Control (PC),” presentado en 20th International Conference on, Strbske Pleso, Eslovaquia, junio 9-12, 2015.spa
dc.relation.references[7] A. U. Levin y K. Narendra, “Control of nonlinear dynamical systems using neural networks,” IEEE Neural Networks Council, vol.7, pp. 30-42, 1996.spa
dc.relation.references[8] K. Narendra y K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Transactions on Neural Networks, vol. 7, N.° 1, 1996.spa
dc.relation.references[9] H. M. Nguyen y N. Subbaram, “Advanced control strategies for wind energy systems: An overview”, presentado en IEEE/PES Power Systems Conference and Exposition, Phoenix, 2011.spa
dc.relation.references[10] K.J. Nidhil, S. Sreeraj, B. Vijay y V. Bagyaveereswaran, “System identification using artificial neural network”, Circuit, Power and Computing Technologies (ICCPCT), presentado en 2015 International Conference, Nagercoil, 2015.spa
dc.relation.references[11] M. Nørgaard, O. Ravn, NK. Poulsen y LK Hansen, Neural Networks for Modelling and Control of Dynamic Systems, Londres: Springer, 2000, pp. 246.spa
dc.relation.references[12] K. Ogata, Ingeniería de control moderna, 4.a ed., Madrid: Prentice Hall, 2003, pp. 984.spa
dc.relation.references[13] D. T. Pham y L. Xing, Neural Networks for identification, prediction and control, Londres: Springer, 2012, pp. 238.spa
dc.relation.references[14] A. Kupin, “Application of neurocontrol principles and classification optimisation in conditions of sophisticated technological processes of beneficiation complexes”. Metallurgical y Mining Industry, vol. 6, pp. 16-24, 2014.spa
dc.relation.references[15] R.J. Rajesh, R. Preethi, P. Mehata y B. Jaganatha Pandian, “Artificial neural network based inverse model control of a nonlinear process,” presentado en Computer, Communication and Control (IC4), International Conference, Indore, 2015.spa
dc.relation.references[16] V.R. Ravi, M. Monica, S. Amuthameena, S.K. Divya, S. Jayashree y J. Varshini, “Sliding Mode Controller for Two Conical Tank Interacting Level System,” Applied Mechanics and Materials, vol. 573, pp. 273-278, 2014.spa
dc.relation.references[17] A. M. Suárez, Nueva arquitectura de control predictivo para sistemas dinámicos no lineales usando redes neuronales, Tesis de Doctorado en Ciencias de la Ingeniería, Universidad de Chile, Santiago de Chile, 1998.spa
dc.relation.references[18] D. Zhao, Z. Xia y D. Wang, “Model-Free Optimal Control for Affine Nonlinear Systems with Convergence Analysis”, IEEE Transactions on Automation Science and Engineering, vol. 12, pp. 1461-1468, 2015.spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científicospa
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International