Mostrar el registro sencillo del ítem

Uso de escórias de alto-forno e aço em misturas asfálticas: revisão;
Uso de escorias de alto horno y acero en mezclas asfálticas: revisión

dc.contributor.authorRondón Quintana, Hugo Alexander
dc.contributor.authorMuniz de Farias, Marcio
dc.contributor.authorReyes Lizcano, Fredy Alberto
dc.date.accessioned2019-11-07T15:03:03Z
dc.date.available2019-11-07T15:03:03Z
dc.date.created2018-03-04
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/5516
dc.description.abstractIn the manufacture of asphalt mixtures, large quantities of natural stone aggregates are consumed, which has a negative impact on the environment. These aggregates can be partially or totally replaced by others that are disposed of in dumps and produced by steel companies, such as blast furnace slag (BFS) and steel (SS). These last two materials have chemical and physical properties that make them suitable for use in multiple applications such as road construction, maintenance and rehabilitation. The article presents a review of the state of knowledge of the use of BFS and SS in the production of asphalt mixtures, describes and defines both materials, presents the environmental problems, their toxicological risk of use, their chemical and physical properties, the advantages and limitations of use and the way they have been studied to be used as stone aggregates of asphalt mixtures. Based on the bibliographic review, the authors at the end of the article present some recommendations to continue the studies tending to substitute natural stone aggregates with BFS and SS in the manufacture of asphalt mixtures.eng
dc.description.abstractgrandes quantidades de agregados pétreos de origem natural são consumidos na fabricação de misturas asfálticas, o que impacta negativamente o ambiente. Esses agregados podem ser substituídos parcial ou totalmente por outros que são descartados em aterros e produzidos pelas companhias siderúrgicas, como as escórias de alto-forno (BFS) e aço (SS). Esses dois últimos materiais apresentam propriedades químicas e físicas que os tornam aptos para serem utilizados em múltiplas aplicações, como a construção, a manutenção e a reabilitação de estradas. No artigo, apresenta-se uma revisão do estado do conhecimento do emprego de BFS e SS na produção de misturas asfálticas, ambos os materiais são descritos e definidos, apresenta-se a problemática ambiental, seu risco toxicológico de uso, suas propriedades químicas e físicas, as vantagens e limitações de uso e a forma como foram estudados para serem empregados como agregados pétreos de misturas asfálticas. Com base na revisão bibliográfica realizada, os autores ao final do artigo expõem algumas recomendações para continuar os estudos com tendência a substituir agregados pétreos naturais por BFS e SS na fabricação de misturas asfálticas.por
dc.description.abstractEn la fabricación de mezclas asfálticas se consumen grandes cantidades de agregados pétreos de origen natural lo que impacta negativamente el ambiente. Estos agregados pueden ser sustituidos parcial o totalmente por otros que son desechados en escombreras y producidos por las compañías siderúrgicas, como las escorias de alto horno (BFS) y acero (SS). Estos dos últimos materiales poseen propiedades químicas y físicas que los hacen aptos para ser utilizados en múltiples aplicaciones como la construcción, mantenimiento y rehabilitación de carreteras. En el artículo se presenta una revisión del estado del conocimiento del empleo de BFS y SS en la producción de mezclas asfálticas, se describen y definen ambos materiales, se presenta la problemática ambiental, su riesgo toxicológico de uso, sus propiedades químicas y físicas, las ventajas y limitaciones de uso y la forma como han sido estudiados para ser empleados como agregados pétreos de mezclas asfálticas. Con base en la revisión bibliográfica realizada, los autores al final del artículo exponen algunas recomendaciones para continuar los estudios tendientes a sustituir agregados pétreos naturales por BFS y SS en la fabricación de mezclas asfálticas.spa
dc.format.extentp. 71-97spa
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/1993
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 17 Núm. 33 (2018): Julio-Diciembre; 71-97spa
dc.subjectBlast furnace slageng
dc.subjectSteel slageng
dc.subjectAsphalt mixtureseng
dc.subjectEnvironmenteng
dc.subjectEscória de alto-fornopor
dc.subjectEscoria de açopor
dc.subjectMisturas asfálticaspor
dc.subjectMeio ambientepor
dc.subjectEscoria de alto hornospa
dc.subjectEscoria de acerospa
dc.subjectMezclas asfálticasspa
dc.subjectMedioambientespa
dc.titleUse of Blast Furnace Slag and Steel in Asphalt Mixtures: Revieweng
dc.titleUso de escórias de alto-forno e aço em misturas asfálticas: revisãopor
dc.titleUso de escorias de alto horno y acero en mezclas asfálticas: revisiónspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.22395/rium.v17n33a4
dc.relation.citationvolume17
dc.relation.citationissue33
dc.relation.citationstartpage71
dc.relation.citationendpage97
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.placeMedellínspa
dc.creator.affiliationRondón Quintana, Hugo Alexander; Universidad Distrital Francisco José de Caldasspa
dc.creator.affiliationMuniz de Farias, Marcio; Universidade de Brasíliaspa
dc.creator.affiliationReyes Lizcano, Fredy Alberto; Pontificia Universidad Javerianaspa
dc.relation.references[1] M. Pasetto y N. Baldo, “Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags,” Journal of Hazardous Materials, vol. 181, N.° 1–3, pp. 938–948. 2010. DOI: 10.1016/j.jhazmat.2010.05.104.spa
dc.relation.references[2] D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. y Shepker, M.A. Zak, “Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags,” Environmental Science and Technology, vol. 34, N.° 8, pp. 1576–1582. 2000. DOI: 10.1021/es9906002.spa
dc.relation.references[3] H. Motz y J. Geiseler, “Products of steel slags an opportunity to save natural resources,” Waste Management, vol. 21, pp. 285–293. 2001. DOI: 10.1016/S0956–053X(00)00102–1.spa
dc.relation.references[4] H. Shen y E. Forssberg, “An overview of recovery of metals from slags,” Waste Management, vol. 23, pp. 933–949. 2003. DOI: 10.1016/S0956–053X(02)00164–2.spa
dc.relation.references[5] M. Maslehuddin, A.M. Sharif, M. Shameem, M. Ibrahim y M.S. Barry, “Comparison of properties of steel slag and crushed limestone aggregate concretes,” Construction and Building Materials, vol. 17, N.° 2, pp. 105–112. 2003. DOI: 10.1016/S0950–0618(02)00095–8.spa
dc.relation.references[6] S. Nouvion, A. Jullien, M. Sommier y V. Basuyau, “Environmental modeling of blast furnace slag aggregate production,” Road Materials and Pavement Design, vol. 10, N.° 4, pp. 715–745. 2009.spa
dc.relation.references[7] J. Geiseler, “Use of steelworks slag in Europe,” Waste Management, vol. 16, N.° 1–3, pp. 59–63. 1996. DOI: 10.1016/S0956–053X(96)00070–0.spa
dc.relation.references[8] M. Pasetto y N. Baldo, “Mix design and performance analysis of asphalt concretes with electric arc furnace slag,” Construction and Building Materials, vol. 25, N.° 8, pp. 3458–3468. 2011. DOI: 10.1016/j.conbuildmat.2011.03.037.spa
dc.relation.references[9] L. Wintenborn y J. Green, “Steelmaking slag: a safe and valuable product,” National Slag Association. 1998.spa
dc.relation.references[10] I.M. Asi, H.Y. Qasrawi y F.I. Shalabi, “Use of steel slag aggregate in asphalt concrete mixes,” Canadian Journal of Civil Engineering, vol. 34, pp. 902–911. 2007. DOI: 10.1139/L07–025.spa
dc.relation.references[11] I. Barišić, I.N. Grubeša y B.H. Kutuzović. “Multidisciplinary approach to the environmental impact of steel slag reused in road construction,” Road Materials and Pavement Design, vol. 18, pp. 1–16. 2016. DOI: 10.1080/14680629.2016.1197143.spa
dc.relation.references[12] A. Prapidis y G. Doulis, “Use of slag in skid resistant asphalt mixes based on mechanical and environmental criteria,” Presentado en Proc. 5th International Exhibition & Conference on Environmental Technology, Athens, Greece. 2005.spa
dc.relation.references[13] A.M. Fällman, “Leaching of chromium and barium from steel slag in laboratory and field tests—a solubility controlled process?,” Waste Management, vol. 20, N.° 2 , p p. 149–154. 2000. DOI: 10.1016/S0956–053X(99)00313–X.spa
dc.relation.references[14] S. Sorlini, A. Sanzeni y L. Rondi, “Reuse of steel slag in bituminous paving mixtures,” Journal of Hazardous Materials, vol. 209–210, pp. 84–91. 2012. DOI: 10.1016/j.jhazmat.2011.12.066.spa
dc.relation.references[15] P. Chaurand, J. Rose, V. Briois, L. Olivi, J.–L. Hazemann, O. Proux, J. Domas y J.–Y. Bottero, “Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach,” Journal of Hazardous Materials, Vol. 139, N.° 3, pp. 537–542. 2007. DOI: 10.1016/j.jhazmat.2006.02.060.spa
dc.relation.references[16] R. Milačič, T. Zuliani, T. Oblak, A. Mladenovič, A. and J.Š. Ančar, (2011). “Environmental impacts of asphalt mixes with electric arc furnace steel slag,” Journal of Environmental Quality, vol. 40, N.° 4, pp. 1153–1161. DOI: 10.2134/jeq2010.0516.spa
dc.relation.references[17] J. Yan, C. Bäverman, L. Moreno y I. Neretnieks, “Evaluation of the time–dependent neutralising behaviours of MSWI bottom ash and steel slag,” Science of the Total Environment, vol. 216, N.° 1–2, pp. 41–54, 1998. DOI: 10.1016/S0048–9697(98)00133–8.spa
dc.relation.references[18] G. S. Roadcap, W. R. Kelly y C. M. Bethke, “Geochemistry of extremely alkaline (pH> 12) ground water in slag – fill aquifers,” Ground Water, vol. 43, N.° 6, pp. 806–816, 2005. DOI: 10.1111/j.1745–6584.2005.00060.x.spa
dc.relation.references[19] H. Seron Pereira, A.J. Manzi Gama, M. Sartori de Camargo y G.H. Korndorfer, “Reatividade de escórias silicatadas da indústria siderúrgica,” Ciênc. Agrotec., lavras, vol. 34, N.° 2, pp. 382–390, 2010.spa
dc.relation.references[20] D.M. Proctor, E.C. Shay, K.A. Fehling y B.L. Finley, “Assessment of human health and ecological risks posed by the uses of steel–industry slags in the environment,” Human and Ecological Risk Assessment, vol. 8, N.° 4, pp. 681–711, 2002.spa
dc.relation.references[21] FHWA – Federal Highway Administration Research and Technology. Coordinating, Developing, and Delivering Highway Transportation Innovations, User Guidelines for Waste and Byproduct Materials in Pavement Construction, Report Publication Number: FHWA–RD–97–148, 2008.spa
dc.relation.references[22] J.L. Marriaga y P. Claisse, “The influence of the blast furnace slag replacement on chloride penetration in concrete”. Ingeniería e Investigación, vol. 31, N.° 2, pp. 38–47, 2011.spa
dc.relation.references[23] NSA, National Slag Association, [En línea], acceso abril de 2016, Disponible: http://nationalslag.org/blast–furnace–slagspa
dc.relation.references[24] H.G. Van Oss, Slag–Iron and Steel, U.S. Geologycal Survey Minerals Yearbook, Servicio Geológico de los Estados: USGS, 2003.spa
dc.relation.references[25] G.D. Airey, A.C. Collop y N.H. Thom, “Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates,” Presentado en 8th Conference on Asphalt Pavements for Southern Africa (CAPSA’04), 2004.spa
dc.relation.references[26] B. Das, S. Prakash, P.S.R. Reddy y V.N. Misra. “An overview of utilization of slag and sludge from steel industries,” Resources, Conservation and Recycling, vol. 50, pp. 40–57, 2007. DOI: 10.1016/j.resconrec.2006.05.008.spa
dc.relation.references[27] A. Jamshidi, K. Kurumisawa, T. Nawa, M. Jize y G. White, “Performance of pavements incorporating industrial byproducts: a state–of–the–art study,” Journal of Cleaner Production, vol. 164, pp. 367–388, 2017. DOI: 10.1016/j.jclepro.2017.06.223.spa
dc.relation.references[28] R. Dippenaar. “Industrial uses of slag (the use and re–use of iron and steelmaking slags),” Ironmaking and Steelmaking, vol. 32, N.° 1, pp. 35–36, 2005.spa
dc.relation.references[29] L.J.M. Houben, S. Akbarnejad y A.A.A. Molenaar, “Performance of pavements with blast furnace base courses,” Presentado en GeoShanghai 2010 –International Conference, Paving Materials and Pavement Analysis, Geotechnical Special Publication N.° 203 (pp. 476–483), China, 2010.spa
dc.relation.references[30] C. Shi, “Steel slag—its production, processing, characteristics, and cementitious properties,”Journal of Materials in Civil Engineering, vol. 16, N.° 3, pp. 230–236, 2004. DOI: 10.1061/(ASCE)0899–1561(2004)16:3(230).spa
dc.relation.references[31] S.I. Abu–Eishah, A.S. El–Dieb y M.S. Bedir, “Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region,” Construction and Building Materials, vol. 34, pp.249–256, 2012. DOI: 10.1016/j.conbuildmat.2012.02.012.spa
dc.relation.references[32] X. Guo y H. Shi, “Utilization of steel slag powder as a combined admixture with ground granulated blast–furnace slag in cement based materials,” Journal of Materials in Civil Engineering. vol. 25, N.° 12, pp. 1990–1993, 2013. DOI: 10.1061/(ASCE)MT.1943–5533.0000760.spa
dc.relation.references[33] J.J. Emery, “Slag Utilization in Pavement Construction,” Presentado en Extending aggregate resources: a symposium sponsored by ASTM Committee D–4 on Road and Paving Materials, EE. UU., 1982. DOI: 10.1520/STP32459S.spa
dc.relation.references[34] D.E. Jones, “Application of steel plant by–products to roadworks,” Presentado en Proceedings—Conference of the Australian Road Research Board, v 11, 11th ARRB Conference, 1982.spa
dc.relation.references[35] N.A. León, N.R. Rojas, B.U. Suárez y O. Bustamante, “Experimental evaluation of silicon – calcareous units from blast furnace slag and hydraulic lime for masonry”. Dyna, vol. 76, N.° 160, pp. 247–254, 2009.spa
dc.relation.references[36] Q. Wang, P. Yan y G. Mi, “Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement,” Construction and Building Materials, vol. 35, pp. 8–14, 2012. DOI: 10.1016/j.conbuildmat.2012.02.085.spa
dc.relation.references[37] H.A. Rondón, J.C., Ruge, D., Patiño, H. Vacca, F.A. Reyes y M. Farias, “Use of blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture,” Journal of Materials in Civil Engineering, vol. 30, N.° 10, 04018244, 2018. doi:10.1061/(ASCE)MT.1943–5533.0002409spa
dc.relation.references[38] A. Al–Hdabi y H. Al Nageim, “Improving asphalt emulsion mixtures properties containing cementitious filler by adding GGBS,” Journal of Materials in Civil Engineering, vol. 29, N.° 5, 04016297–1, 2016. doi:10.1061/(ASCE)MT.1943–5533.0001859.spa
dc.relation.references[39] A. Misra, D. Biswas y S. Upadhyaya, “Physico–mechanical behavior of self–cementing class C fly ash–clay mixtures,” Fuel, vol. 84, N.° 11, pp. 1410–1422, 2005. DOI: 10.1016/j.fuel.2004.10.018.spa
dc.relation.references[40] A.I. Nassar, M.K. Mohammedb, N. Thom y T. Parry, “Mechanical, durability and microstructure properties of Cold Asphalt Emulsion Mixtures with different types of filler,” Construction and Building Materials, vol. 114, pp. 352–363, 2016. DOI: 10.1016/j.conbuildmat.2016.03.112.spa
dc.relation.references[41] A. Modarres y M. Rahmanzadeh, “Application of coal waste powder as filler in hot mix asphalt,” Construction and Building Materials, vol. 66, pp. 476–483. 2014. DOI: 10.1016/j.conbuildmat.2014.06.002.spa
dc.relation.references[42] R. Muniandy, E. Aburkaba y L. Mahdi, “Effect of mineral filler type and particle size on asphalt–filler mastic and stone mastic asphalt laboratory measured properties,” Australian Journal of Basic and Applied Sciences, vol. 7, N.° 11, pp. 475–787, 2013.spa
dc.relation.references[43] T. Ozbakkaloglu, L. Gu y A.F. Pour, “Normal and high–strength concretes incorporating air–cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior,” Construction and Building Materials, vol. 126, pp. 138–146, 2016. DOI: 10.1016/j.conbuildmat.2016.09.015.spa
dc.relation.references[44] J. Xie, S. Wu, J. Lin, J. Cai, Z. Chen y W. Wei, “Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization and moisture damage investigation,” Construction and Building Materials, vol. 36, pp. 467–474, 2012. DOI: 10.1016/j.conbuildmat.2012.06.023.spa
dc.relation.references[45] G. Wang, Y. Wang y Z. Gao, “Use of steel slag as a granular material: Volume expansion prediction and usability criteria,” Journal of Hazardous Materials, vol. 184, N.° 1–3, pp. 555–560, 2010. DOI: 10.1016/j.jhazmat.2010.08.071.spa
dc.relation.references[46] S. Akbarnejad, L.J.M. Houben y A.A.A. Molenaar, “Application of aging methods to evaluate the long–term performance of road bases containing blast furnace slag materials,” Road Materials and Pavement Design, vol. 15, N.° 3, pp. 488–506, 2014. DOI: 10.1080/14680629.2014.907196.spa
dc.relation.references[47] S. Wu, Y. Xue, Q. Ye y Y. Chen, “Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures,” Building and Environment, vol. 42, N.° 7, pp. 2580–2585, 2007. DOI: 10.1016/j.buildenv.2006.06.008.spa
dc.relation.references[48] A.M. Dunster, “The use of blastfurnace slag and steel slag as aggregates,” Presentado en 4th European symposium on performance of bituminous and hydraulic materials in pavements, Nottingham, 11–12 april of 2002. pp. 257–260.spa
dc.relation.references[49] F. Kehagia, “Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates,” Waste Management and Research, vol. 27, N.° 3, pp. 288–294, 2009. DOI: 10.1177/0734242X08092025.spa
dc.relation.references[50] Y. Xue, S. Wu, H. Hou y J. Zha, “Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture,” Journal of Hazardous Materials, vol. 138, N.° 2, pp. 261–268, 2006. DOI: 10.1016/j.jhazmat.2006.02.073.spa
dc.relation.references[51] J. Zhao, D. Wang, P. Yan, D. Zhang y H. Wang, “Self–cementitious property of steel slag powder blended with gypsum,” Construction and Building Materials, vol. 113, pp. 835–842, 2016. DOI: 10.1016/j.conbuildmat.2016.03.102.spa
dc.relation.references[52] H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan y H. Chen, “An overview of utilization of steel slag,” Procedia Environmental Sciences, vol. 16, pp. 791–801, 2012. DOI: 10.1016/j.proenv.2012.10.108.spa
dc.relation.references[53] P. Ahmedzade y B. Sengoz, “Evaluation of steel slag coarse aggregate in hot mix asphalt concrete,” Journal of Hazardous Materials, vol. 165, pp. 300–305, 2009. DOI: 10.1016/j.jhazmat.2008.09.105.spa
dc.relation.references[54] A. Kavussi y M.J. Qazizadeh, “Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging,” Construction and Building Materials, vol. 72, pp. 158–166, 2014. DOI: 10.1016/j.conbuildmat.2014.08.052.spa
dc.relation.references[55] V. Haritonovs, M. Zaumanis, G. Brencis y J. Smirnovs, “Use of unconventional aggregates in hot mix asphalt concrete,” Baltic Journal of Road and Bridge Engineering, vol. 9, N.° 4, pp. 276–282, 2014. DOI: 10.3846/bjrbe.2014.34.spa
dc.relation.references[56] M. De Oliveira Polese, G. Lopes Carreiro, M. Gomes da Silva y M. Ribas Silva, “Caracterização Microestrutural da Escória de Aciaria,” Revista Matéria, vol. 11, N.° 4, pp. 444–454, 2006.spa
dc.relation.references[57] I.Z. Yildirim y M. Prezzi, “Geotechnical properties of fresh and aged basic oxygen furnace steel slag,” Journal of Materials in Civil Engineering, vol. 27, N.° 12, 2015. DOI: 10.1061/(ASCE)MT.1943–5533.0001310.spa
dc.relation.references[58] M. Pasetto y N. Baldo, “Laboratory investigation on foamed bitumen bound mixtures made with steel slag, foundry sand, bottom ash and reclaimed asphalt pavement,” Road Materials and Pavement Design, vol. 13, N.° 4, pp. 691–712, 2012. DOI: 10.1080/14680629.2012.742629.spa
dc.relation.references[59] M.M.A. Aziz, M.R. Hainin, H. Yaacob, Z. Ali, F.L. Chang y A.M. Adnan, “Characterization and utilization of steel slag for the construction of roads and highways,” Materials Research Innovations, vol. 18, S6, pp. 255–259, 2014. DOI: 10.1179/1432891714Z.000000000967.spa
dc.relation.references[60] J.M. Manso, J.J. González y J.A. Polanco, “Electric arc furnace slag in concrete,” Journal of Materials in Civil Engineering, vol. 16, N.° 6 , p p. 6 39–645, 2 004. DOI: 10.1061/(ASCE)0899–1561(2004)16:6(639).spa
dc.relation.references[61] H. Qasrawi, “The use of steel slag aggregate to enhance the mechanical properties of recycled aggregate concrete and retain the Environment,” Construction and Building Materials, vol. 54, pp. 298–304, 2014. DOI: 10.1016/j.conbuildmat.2013.12.063.spa
dc.relation.references[62] S. Pamukcu y A. Tuncan, “Laboratory characterization of cementstabilized iron–rich slag for reuse in transportation facilities,” Transportation Research Record, N.° 1424, pp. 25–33, 1993.spa
dc.relation.references[63] J.M. Manso, V. Ortega, J.A. Polanco y J. Setién, “The use of ladle furnace slag in soil stabilization,” Construction and Building Materials, vol. 40, pp. 126–34. 2013. DOI: 10.1016/j.conbuildmat.2012.09.079.spa
dc.relation.references[64] S. Aiban, “Utilization of steel slag aggregate for road bases,” Journal of Testing and Evaluation, vol. 34, N.° 1, pp. 1–11, 2006. DOI: 10.1520/JTE12683.spa
dc.relation.references[65] S. Hosseini, S.M. Soltani, P.S. Fennell, T.S.Y. Choong y M.K. Aroua, “Production and applications of electric–arc–furnace slag as solid waste in environmental technologies: a review,” Environmental Technology Reviews, vol. 5, N.° 1, pp. 1–11, 2016. DOI: 10.1080/21622515.2016.1147615.spa
dc.relation.references[66] R.M. Prado, W. Natale, F.M. Fernandes y M.C.M. Corrêa, “Reatividade de uma escória de siderurgia em um latossolo vermelho distrófico,” R. Bras. Ci. Solo, vol. 28, pp. 197–205, 2004.spa
dc.relation.references[67] M.F. Sobral, C.W.A. do Nascimento, K.P.V. da Cunha, H.A. Ferreira, A.J. Silva y F.B.V. Silva, “Escória de siderurgia e seus efeitos nos teores de nutrientes e metais pesados em cana–de–açúcar,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 15, N.° 8, pp.867–872, 2011.spa
dc.relation.references[68] S. Radosavljevic, D. Milic and M. Gavrilovski, “Mineral processing of a converter slag and its use in iron ore sintering,” Magnetic and Electrical Separation, vol. 7, N.° 4, pp. 201–211, 1996. DOI: 10.1155/1996/31471.spa
dc.relation.references[69] M. Sumayya, M. Romeela y K. Prakash, “Characterization of electric arc furnace slags as concrete aggregate in a small island developing state: A preliminary study,” Construction and Building Materials, vol. 105, pp. 459–464, 2016. DOI: 10.1016/j.conbuildmat.2015.12.169.spa
dc.relation.references[70] S. Hesami, M. Ameri, H. Goli y A. Akbari, “Laboratory investigation of moisture susceptibility of warm–mix asphalt mixtures containing steel slag aggregates,” International Journal of Pavement Engineering, vol. 16, N.° 8, pp. 745–759, 2015. DOI: 10.1080/10298436.2014.953502.spa
dc.relation.references[71] M. Arabani y A.R. Azarhoosh, “The effect of recycled concrete aggregate and steel slag on the dynamic properties of asphalt mixtures,” Construction and Building Materials, Vol. 35, pp. 1–7, 2012. DOI: 10.1016/j.conbuildmat.2012.02.036.spa
dc.relation.references[72] T. Sofilić, A. Mladenovič y U. Sofilić, “Defining of EAF steel slag application possibilities in asphalt mixture production,” Journal of Environmental Engineering and Landscape Management, vol. 19, N.°2, pp. 148–157, 2011. DOI: 10.3846/16486897.2011.580910.spa
dc.relation.references[73] M. Tossavainen, F. Engstrom, Q. Yang, N. Menad, M. Lidstrom y B. Bjorkman, “Characteristics of steel slag under different cooling conditions,” Waste Management, vol. 27, pp. 1335–1344, 2007. DOI: 10.1016/j.wasman.2006.08.002.spa
dc.relation.references[74] B.V. Kök y N. Kuloğlu, “Effects of steel slag usage as aggregate on indirect tensile and creep modulus of hot mix asphalt,” Gazi University Journal of Sience, vol. 21, N.° 3, pp. 97–103, 2008.spa
dc.relation.references[75] G. Wang, “Determination of the expansion force of coarse steel slag aggregate,” Construction and Building Materials, vol. 24, pp. 1961–1966, 2010. DOI: 10.1016/j.conbuildmat.2010.04.004.spa
dc.relation.references[76] M. Ameri, S. Hesami y H. Goli, “Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag,” Construction and Building Materials, vol. 49, pp. 611–617, 2013. DOI: 10.1016/j.conbuildmat.2013.08.034.spa
dc.relation.references[77] J. Xie, J. Chen, S. Wu, J. Lin y W. Wei, “Performance characteristics of asphalt mixture with basic oxygen furnace slag,” Construction and Building Materials, vol. 38, pp. 796–803, 2013. DOI: 10.1016/j.conbuildmat.2012.09.056.spa
dc.relation.references[78] G.H. Shafabakhsh y O.J. Ani, “Experimental investigation of effect of nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates,” Construction and Building Materials, vol. 98, pp. 692–702, 2015. DOI: 10.1016/j.conbuildmat.2015.08.083.spa
dc.relation.references[79] G.H. Shafabakhsh, O.J. Ani y M. Talebsafa, “Artificial neural network modeling (ANN) for predicting rutting performance of nano–modified hot–mix asphalt mixtures containing steel slag aggregates,” Construction and Building Materials, vol. 85, pp. 136–143, 2015a. DOI: 10.1016/j.conbuildmat.2015.03.060.spa
dc.relation.references[80] L. Hunt y G. Boyle, “Steel slag in hot mix asphalt concrete,” Final Report, State Research Project #511, Oregon Department of Transportation, 2000.spa
dc.relation.references[81] D.H. Shen, C.M. Wu y J.C. Du, “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture,” Construction and Building Materials. vol. 23, pp. 453–461, 2009. DOI: 10.1016/j.conbuildmat.2007.11.001.spa
dc.relation.references[82] Y. Xue, H. Hou, S. Zhu y J. Zha, “Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: pavement performance and environmental impact,” Construction and Building Materials, vol. 23, N.° 2, pp.989–96, 2009. DOI: 10.1016/j.conbuildmat.2008.05.009.spa
dc.relation.references[83] J. Xie, Z. Chen, L. Pang y S. Wu, “Implementation of modified pull–off test by UTM to investigate bonding characteristics of bitumen and basic oxygen furnace slag (BOF),” Construction and Building Materials, vol. 57, pp. 61–68, 2014. DOI: 10.1016/j.conbuildmat.2014.01.083.spa
dc.relation.references[84] JEGEL. “Steel slag aggregates use in hot mix asphalt concrete,” Final report prepared for the steelmaking slag Technical Committee, Toronto, John Emery Geotechnical Engineering Limited (JEGEL), 1993.spa
dc.relation.references[85] J. Emery, “Steel slag utilization in asphalt mixes,” National Slag Association MF 186–1. Canadian Technical Asphalt Association Proceedings, 1986, 11 p.spa
dc.relation.references[86] W.T. Kuo y C.Y. Shu. “Application of high–temperature rapid catalytic technology to forecast the Volumetric stability behavior of containing steel slag mixtures,” Construction and Building Materials, vol. 50, pp. 463–470, 2014. DOI: 10.1016/j.conbuildmat.2013.09.030.spa
dc.relation.references[87] Q. Li, H. Ding, A. Rahman y D. He, “Evaluation of Basic Oxygen Furnace (BOF) material into slag–based asphalt concrete to be used in railway substructure”. Construction and Building Materials, vol. 115, pp. 593–601, 2016. DOI: 10.1016/j.conbuildmat.2016.04.085.spa
dc.relation.references[88] M. Ameri y B. Behnood, “Laboratory studies to investigate the properties of CIR Mixes containing steel slag as a substitute for virgin aggregates,” Journal of Construction and Building Materials, vol. 26, N.° 1, pp. 475–480, 2012. DOI: 10.1016/j.conbuildmat.2011.06.047.spa
dc.relation.references[89] Z. Chen, S. Wu, J. Wen, M. Zhao, M. Yi y J. Wan, “Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture,” Construction and Building Materials, vol. 93, pp. 911–918, 2015. DOI: 10.1016/j.conbuildmat.2015.05.070.spa
dc.relation.references[90] A. Hiltunen, “The influence of chemical and physical properties on the utilization of slags,” presentado en Sixth International Conference on Molten Slags, Fluxes and Salts, Finland, 2000.spa
dc.relation.references[91] B.J. Reeves y W.K. Lu, “High temperature modification of steelmaking slags by the addition of fayalite slag to react a Volumetrically stable aggregate,” Presentado en Sixth International Conference on Molten Slags, Fluxes and Salts, Finland, 2000.spa
dc.relation.references[92] Y. Shi, H. Chen, J. Wang y Q. Feng, “Preliminary investigation on the pozzolanic activity of superfine steel slag,” Construction and Building Materials, vol. 82, pp. 227–234, 2015.spa
dc.relation.references[93] M. Tiifekqi, A. Demirbas y H. Genc, “Evaluation of steel furnace slags as cement additives,” Cement and Concrete Research. vol. 27, N.° 11, pp. 1713–1717, 1997. DOI: 10.1016/S0008–8846(97)00158–0.spa
dc.relation.references[94] H. Wen, E. Wu y S. Bhusal, “Evaluation of steel slag as hot mix asphalt aggregate,” Final report, Edw. C. Levy Co. and Nucor Steel Seattle, Inc., Seattle, WA, 2014.spa
dc.relation.references[95] H. Ziari, y M.M. Khabiri, “Preventive maintenance of flexible pavement and mechanical properties of steel slag asphalt,” Journal of Environmental Engineering and Landscape Management, vol. 15, N.° 3, pp. 188b–192b., 2007. DOI: 10.1080/16486897.2007.9636928.spa
dc.relation.references[96] .A. Oluwasola, M.R. Hainin, M.M.A. Aziz, H. Yaacob y M.N.M. Warid, “Potentials of steel slag and copper mine tailings as construction materials,” Materials Research Innovations, vol. 18, S6, pp. 250–254, 2014. DOI: 10.1179/1432891714Z.000000000966.spa
dc.relation.references[97] H. Wen, S. Wu y S. Bhusal, “Performance evaluation of asphalt mixes containing steel slag aggregate as a measure to resist studded tire wear,” Journal of Materials in Civil Engineering, vol. 28, N.° 5, 2016. DOI: 10.1061/(ASCE)MT.1943–5533.0001475.spa
dc.relation.references[98] U. Bagampadde, H.I.A. Wahhab y S.A. Aiban, “Optimization of steel slag aggregates for bituminous mixes in Saudi Arabia,” Journal of Materials in Civil Engineering, vol. 11, N.° 1, pp. 30–35, 1999. DOI: 10.1061/(ASCE)0899–1561(1999)11:1(30).spa
dc.relation.references[99] L.S. Huang, D.F. Lin, H.L. Luo y P.C. Lin, “Effect of field compaction mode on asphalt mixture concrete with basic oxygen furnace slag,” Construction and Building Materials, vol. 34, pp. 16–27, 2012. DOI: 10.1016/j.conbuildmat.2012.02.008.spa
dc.relation.references[100] S.–H. Chen, J.–D. Lin, D. Huang y C.–T. Hung, “Performance of replacing traditional natural aggregates in dense grade asphalt concrete with basic oxygen furnace slag,” presentado en Geo–Hubei 2014 International Conference on Sustainable Civil Infrastructure, China, pp. 107–114, 2014. DOI: 10.1061/9780784478554.014.spa
dc.relation.references[101] E.A. Oluwasola, M.R. Hainin y M.M.A. Aziz, “Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction,” Transportation Geotechnics, vol. 2, pp. 47–55, 2015. DOI: 10.1016/j.trgeo.2014.09.004.spa
dc.relation.references[102] Z. Chen, J. Xie, Y. Xiao, J. Chen y S. Wu, “Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder,” Construction and Building Materials, vol. 64, pp. 60–66, 2014. DOI: 10.1016/j.conbuildmat.2014.04.074.spa
dc.relation.references[103] I. Liapis y S. Likoydis, “Use of electric arc furnace slag in thin skid–resistant surfacing,” Procedia –Social and Behavioral Sciences, vol. 48, pp. 907–918, 2012. DOI: 10.1016/j.sbspro.2012.06.1068.spa
dc.relation.references[104] I.S. Bessa, V. Castelo–Branco y J. Barbosa–Soares, “Evaluation of polishing and degradation resistance of natural aggregates and steel slag using the aggregate image measurement system,” Road Materials and Pavement Design, vol. 15, N.° 2, pp. 385–405, 2014. DOI: 10.1080/14680629.2014.883323.spa
dc.relation.references[105] Z. Chen, S. Wu, Y. Xiao, M. Zhao y J. Xie, “Feasibility study of BOF slag containing honeycomb particles in asphalt mixture,” Construction and Building Materials, vol. 124, pp. 550–557, 2016. DOI: 10.1016/j.conbuildmat.2016.07.128.spa
dc.relation.references[106] L.S. Huang, G.L. Zou, H.L. Luo y C.C. Chao, “In–situ temperature effects in basic oxygen furnace slag asphalt concrete pavement,” International Journal of Pavement Research and Technology, vol. 6, N.° 4, pp. 386–94, 2013.spa
dc.relation.references[107] D.F. Lin, L.H. Chou, Y.K. Wanga y H.L. Luo, “Performance evaluation of asphalt concrete test road partially paved with industrial waste –Basic oxygen furnace slag,” Construction and Building Materials, vol. 78, pp. 315–323, 2015. DOI: 10.1016/j.conbuildmat.2014.12.078.spa
dc.relation.references[108] Y. Xue, H. Hou y S. Zhu, “Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study,” Chemical Engineering Journal, vol. 147, N.° 2–3, pp. 272–279, 2009a. DOI: 10.1016/j.cej.2008.07.017.spa
dc.relation.references[109] Y.C. Hsu, “The evaluation of temperature on asphalt concrete with basic oxygen furnace slag mixed,” Tesis de maestría, Ingeniería, I–Shou University, Taiwan, 2009.spa
dc.relation.references[110] N.A. Ali, J.S. Chan, T. Papagiannakis, E.G. Theriault y A.T. Bergan, “The use of steel slag in asphaltic concrete,” ASTM Special Technical Publication, pp. 3–18, 1992.spa
dc.relation.references[111] C. Li, Z. Chen, S. Wu, B. Li, J. Xie y Y. Xiao, “Effects of steel slag fillers on the rheological properties of asphalt mastic,” Construction and Building Materials, vol. 145, N.° 1, pp. 383–391. 2017. DOI: 10.1016/j.conbuildmat.2017.04.034.spa
dc.relation.references[112] D. Topini, E. Toraldo, L. Andena y E. Mariani, “Use of recycled fillers in bituminous mixtures for road pavements,” Construction and Building Materials, vol. 159, pp. 189–197, 2018. DOI: 10.1016/j.conbuildmat.2017.10.105.spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científicospa
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International