Show simple item record

Uma proposta metodológica para a concepção técnica de microrredes;
Una propuesta metodológica para la concepción técnica de micro-redes

dc.contributor.authorMina Casaran, Juan David
dc.contributor.authorEcheverry, Diego Fernando
dc.contributor.authorLozano Moncada, Carlos Arturo
dc.description.abstractThis paper introduces a methodology for the technical conception of microgrids. It takes into account aspects such as the topological survey of the medium power electrical system, the preselection of renewable sources technologies, the prioritisation of the electrical demand, the localization, dimensioning and operative strategies of the distributed generators, the components model and the microgrid evaluation. This methodology proposes the use of a multi-criteria analysis technique for the prioritisation of the demand and the stability index of (SI) voltage for the location of distributed generators in the microgrid. In this work the computational tool for the power system analysis Neplan® was used for the components modeling and evaluation of the microgrid performance through the IREG voltage regulation index and the optimal power management of the microgrid’s generation units.eng
dc.description.abstractNeste trabalho, é apresentada uma metodologia para a concepção técnica de microrredes. São considerados aspectos como o levantamento da topologia do sistema elétrico de média tensão, a pré-seleção de tecnologias de fontes renováveis, a priorização da demanda elétrica, a localização, o dimensionamento e as estratégias de operação dos geradores distribuídos, o modelo de componentes e a avaliação da microrrede. A metodologia propõe o uso de uma técnica de análise multicritério para priorizar a demanda e o índice de estabilidade de voltagem (SI) para localizar geradores distribuídos na microrrede. Neste trabalho, foi utilizada a ferramenta computacional de análise de sistemas de potência Neplan® para o modelado de componentes e avaliação do desempenho da microrrede por meio do índice de regulação de voltagem IREG e da gestão otimizada de potência das unidades de geração da microrrede.por
dc.description.abstractEn este trabajo se presenta una metodología para la concepción técnica de micro-redes. Se consideran aspectos como el levantamiento de la topología del sistema eléctrico de media tensión, la preselección de tecnologías de fuentes renovables, la priorización de la demanda eléctrica, la localización, el dimensionamiento y las estrategias de operación de los generadores distribuidos, el modelo de componentes y la evaluación de la micro-red. La metodología propone el uso de una técnica de análisis multicriterio para la priorización de la demanda y el índice de estabilidad de voltaje (SI) para la ubicación de generadores distribuidos en la micro-red. En este trabajo se utilizó la herramienta computacional de análisis de sistemas de potencia Neplan® para el modelado de componentes y evaluación del desempeño de la micro-red por medio del índice de regulación de voltaje IREG y la gestión óptima de potencia de las unidades de generación de la
dc.format.extentp. 199-218spa
dc.publisherUniversidad de Medellínspa
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 199-218spa
dc.subjectPower quality; Power delivered; Distributed generation; IREG index; SI index; Microgrid; Voltage profileeng
dc.subjectQualidadede energia; Despacho de potência; Geração distribuída; Índice IREG; Índice SI; Microrrede; Perfil de tensão.por
dc.subjectCalidad de energía; Despacho de potencia; Generación distribuida; Índice IREG; Índice SI; Micro-red; Perfil de tensiónspa
dc.titleA methodological proposal for the technical conception of microgridseng
dc.titleUma proposta metodológica para a concepção técnica de microrredespor
dc.titleUna propuesta metodológica para la concepción técnica de micro-redesspa
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.creator.affiliationMina Casaran, Juan David; Universidad del Vallespa
dc.creator.affiliationEcheverry, Diego Fernando; Universidad del Vallespa
dc.creator.affiliationLozano Moncada, Carlos Arturo; Universidad del Vallespa
dc.relation.references[1] S. Tselepis and J. Nikoletatos, “Renewable Energy Integration in Power Grids,” IEA-Etsap Irena Technology Brief, 2015. [Online]. Available:
dc.relation.references[2] X. Xia and J. Xia, “Evaluation of Potential for Developing Renewable Sources of Energy to Facilitate Development in Developing Countries,” in Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–
dc.relation.references[3] R. Palma-Behnke et al., “A Microgrid Energy Management System Based on the Rolling Horizon Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996–1006,
dc.relation.references[4] M. A. Izumida, “Design and Implementation of a Feasible Microgrid Model in Brazil,” 2015, pp. 1–
dc.relation.references[5] J. Hernández, A. M. Blanco, and L. E. Luna, “Design and installation of a smart grid with distributed generation. A pilot case in the Colombian networks,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 565–569,
dc.relation.references[6] G. Messinis et al., “Multi-microgrid laboratory infrastructure for smart grid applications,” MedPower 2014, no. February 2016, pp. 1–6,
dc.relation.references[7] I. Szeidert, I. Filip, O. Prostean, and C. Vasar, “Laboratory setup for microgrid study,” INES 2016 - 20th Jubil. IEEE Int. Conf. Intell. Eng. Syst. Proc., pp. 289–292,
dc.relation.references[8] J. L. Espinoza, L. G. Gonzalez, and R. Sempertegui, “Micro grid Laboratory as a Tool for Research on Non-Conventional Energy Sources in Ecuador,” 2017 IEEE Int. Autumn Meet. Power, Electron. Comput. Ropec 2017, vol. 2018-Janua, no. Ropec, pp. 1–7,
dc.relation.references[9] C. Patrascu, N. Muntean, O. Cornea, and A. Hedes, “Microgrid Laboratory for Educational and Research Purposes,” 2016 IEEE 16th Int. Conf. Environ. Electr. Eng., pp. 1–6,
dc.relation.references[10] T. Foley et al., Renewables 2015 global status report.
dc.relation.references[11] Z. Xue-song, “Research on Smartgrid Technology,” in International Conference on Computer Application and System Modeling (Iccasm), 2010, no. Iccasm, pp. 599–
dc.relation.references[12] J. D. Mina, E. F. Caicedo, and C. A. Lozano, “A proposal of integration of decentralized generation architectures in microgrid environments,” Entre Cienc. e Ing., vol. 1, no. 22, pp. 9–17,
dc.relation.references[13] N. Beerea, D. McPhailb, and R. Sharmaa, “A General Methodology for Utility Microgrid Planning,” in IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2015, vol. 3, pp. 1–
dc.relation.references[14] C. Tjah, R. Yan, T. K. Saha, and S. E. Goodwin, “Design Microgrid for a Distribution Network : A Case Study of the University of Queensland,” in Power & Energy Society General Meeting, 2013, pp. 1–
dc.relation.references[15] Electric Power Research Institute EPRI, “The Integrated Grid a Benefit-Cost Framework,” Palo Alto, USA,
dc.relation.references[16] P. A. Manrique Castillo, “Metodología Para el Diseño de Sistemas Híbridos Para Generación de Energía Eléctrica y Análisis de su Viabilidad Mediante el Empleo de un Sistema de Información Geográfica,” Universidad del Valle,
dc.relation.references[17] Y. Muñoz and A. Ospino, “Selecting the Optimal Energy Mix and Sizing of a Isolated Microgrid,” Energía y Medio Ambient., vol. 4, no. 7, pp. 59–67,
dc.relation.references[18] Instituto Colombiano de Normas Técnicas y Certificación Icontec, Norma Técnica Colombiana NTC 1340 - Electrotecnia. Tensiones y Frecuencia Nominales en Sistemas de Energía Eléctrica en Redes de Servicio Público. Bogotá, Colombia,
dc.relation.references[19] Unidad de Planeación Minero Energética UPME, Atlas de Radiación Solar de Colombia.Bogotá, Colombia,
dc.relation.references[20] Unidad de Planeación Minero Energética UPME, Atlas de Viento y Energia Eólica en Colombia. Bogotá, Colombia,
dc.relation.references[21] Unidad de Planeación Minero Energética UPME, Atlas del Potencial Energético de la Biomasa Residual en Colombia. Bogotá, Colombia,
dc.relation.references[22] F. E. Sierra, A. F. Sierra, and C. A. Guerrero, “Pequeñas y microcentrales hidroeléctricas : alternativa real de generación eléctrica,” pp. 8–11,
dc.relation.references[23] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” Eur. J. Oper. Res., vol. 48, pp. 9–26,
dc.relation.references[24] K. V Kumar and M. P. Selvan, “Planning and Operation of Distributed Generations in Distribution Systems for Improved Voltage Profile,” 2009 IEEEPES Power Syst. Conf. Expo., vol. 620015, pp. 1–7,
dc.relation.references[25] A. R. Utomo, “Analysis of Lead Acid Battery Operation Based on Peukert Formula,” no. November, pp. 416–419,
dc.relation.references[26] IEEE Standards Coordinating Committee 21, IEEE Application Guide for IEEE Std 1547, Standard for Interconnecting Distributed Resources With Electric Power Systems. New York, USA,
dc.relation.references[27] IEEE Standards Coordinating Committee 21, IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems. New York, USA,
dc.relation.references[28] M. Z. C. Wanik, A. A. Ibrahim, A. K. M. Hussin, M. R. Rusli, and J. H. Tang, “Simplified Dynamic Model of Photovoltaic Generation System for Grid Integration Studies,” in Intelligent and Advanced Systems (Icias), 2014, pp. 1–
dc.relation.references[29] P. Sorensen, B. Andresen, J. Fortmann, and P. Pourbeik, “Modular Structure of Wind Turbine Models in IEC 61400-27-1,” 2013 IEEE Power Energy Soc. Gen. Meet., pp. 1–5,
dc.relation.references[30] O. Tremblay, L. Dessaint, and A. Dekkiche, “A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles,” in Vehicle Power and Propulsion Conference IEEE, 2007, no. 5, pp. 284–
dc.relation.references[31] G. Caicedo, C. A. Lozano, A. M. Bahamón, and L. A. Ochoa, “Modelos Para Estimar la Demanda en Sistemas de Distribución,” Energía y Computacion, vol. XI. pp. 35–44,
dc.relation.references[32] D. G. Herrera, G. L. Russi, and E. R. Trujillo, “Evaluación del Impacto de la Generación Distribuida Mediante Índices Normalizados Con Base en la Normatividad Colombiana y Estándares IEEE,” Sci. Electron. Libr. Online, vol. 20, no. 2, pp. 299–315,
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.localArtículo científicospa
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International