Mostrar el registro sencillo del ítem

dc.creatorCorrea J.D.
dc.creatorPacheco M.
dc.creatorBravo S.
dc.creatorChico L.
dc.date2020
dc.date.accessioned2020-04-29T14:53:34Z
dc.date.available2020-04-29T14:53:34Z
dc.identifier.issn86223
dc.identifier.urihttp://hdl.handle.net/11407/5649
dc.descriptionWe systematically study the electronic and magnetic properties of one dimensional derivatives of a family of materials closely related to penta-graphene, obtained from it by replacing the four-fold coordinated carbon atoms by other elements. Due to quantum confinement and edge effects, pentagonal nanoribbons reveal unusual electronic and magnetic characteristics. Depending on the specific pentagonal material and edge geometries, these systems can hold spin-unpolarized states or magnetic states with diverse electronic behavior. Different magnetic configurations such as bipolar semiconductors or half-metals may be tuned by the application of an external electric field. A complete classification of the pentagonal nanoribbons is developed using magnetic space group methods, giving clear selection rules of the possible magnetic phases and their relation to symmetry breaking, edge configuration and also their evolution under the action of an external electric field. Our results based on first-principles calculations are relevant for applications in spintronic devices. © 2020 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079847315&doi=10.1016%2fj.carbon.2020.02.037&partnerID=40&md5=42c49b892cafb8b110d1688aa2b834f3
dc.sourceCarbon
dc.subjectCalculations
dc.subjectElectric fields
dc.subjectGraphene
dc.subjectMagnetic properties
dc.subjectNanoribbons
dc.subjectComplete classification
dc.subjectElectronic and magnetic properties
dc.subjectElectronic behaviors
dc.subjectExternal electric field
dc.subjectFirst-principles calculation
dc.subjectMagnetic characteristic
dc.subjectMagnetic configuration
dc.subjectMagnetic space group
dc.subjectMagnetism
dc.titleElectronic and magnetic properties of pentagonal nanoribbons
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1016/j.carbon.2020.02.037
dc.relation.citationvolume162
dc.relation.citationstartpage209
dc.relation.citationendpage219
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Pacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; Bravo, S., Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile; Chico, L., Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/ Sor Juana Inés de La Cruz 3, Madrid, 28049, Spain
dc.relation.referencesTang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized Dirac dispersion relations (2014) J. Appl. Phys., 115, p. 113702
dc.relation.referencesZhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P., Penta-graphene: a new carbon allotrope (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 2372-2377
dc.relation.referencesStauber, T., Beltrán, J.I., Schliemann, J., Tight-binding approach to penta-graphene (2016) Sci. Rep., 6, p. 22672
dc.relation.referencesBravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep., 8, p. 11070
dc.relation.referencesZhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Sci. Rep., 6, p. 29531
dc.relation.referencesLiu, Z., Wang, H., Sun, J., Sun, R., Wang, Z.F., Yang, J., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177
dc.relation.referencesZhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Comput. Mater. Sci., 159, pp. 448-453
dc.relation.referencesCerdá, J.I., S?awi?ska, J., Le Lay, G., Marele, A.C., Gómez-Rodríguez, J., Dávila, M.E., Unveiling the pentagonal nature of perfectly aligned single-and double-strand Si nanoribbons on ag(110) (2016) Nat. Commun., 7, p. 13076
dc.relation.referencesOyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., PdSe2: pentagonal two-dimensional layers with high air stability for electronics (2017) J. Am. Chem. Soc., 139, pp. 14090-14097
dc.relation.referencesZhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251
dc.relation.referencesLiu, L., Zhuang, H.L., ptp2: an example of exploring the hidden cairo tessellation in the pyrite structure for discovering novel two-dimensional materials (2018) Phys. Rev. Mater., 2, p. 114003
dc.relation.referencesYuan, H., Li, Z., Yang, J., Atomically thin semiconducting penta-pd2 and pdas2 with ultrahigh carrier mobility (2018) J. Mater. Chem. C, 6, pp. 9055-9059
dc.relation.referencesYuan, J.-H., Song, Y.-Q., Chen, Q., Xue, K.-H., Miao, X.-S., Single-layer planar penta-x2n4 (x = ni, pd and pt) as direct-bandgap semiconductors from first principle calculations (2019) Appl. Surf. Sci., 469, pp. 456-462
dc.relation.referencesZhang, R.-W., Liu, C.-C., Ma, D.-S., Yao, Y., From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide (2018) Phys. Rev. B, 97, p. 125312
dc.relation.referencesBerdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: first-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001
dc.relation.referencesLopez Bezanilla, A., Littlewood, P.B., ? ? band inversion in a novel two-dimensional material (2015) J. Phys. Chem. C, 119, p. 19469
dc.relation.referencesBravo, S., Correa, J., Chico, L., Pacheco, M., Symmetry-protected metallic and topological phases in penta-materials (2019) Sci. Rep., 9, p. 12754
dc.relation.referencesZhang, S., Zhou, J., Wang, Q., Jena, P., Beyond graphitic carbon nitride: nitrogen-rich penta-CN2 sheet (2016) J. Phys. Chem. C, 120, pp. 3993-3998
dc.relation.referencesLi, F., Tu, K., Zhang, H., Chen, Z., Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation (2015) Phys. Chem. Chem. Phys., 17, pp. 24151-24156
dc.relation.referencesYue, S.-Y., Yan, Q.-B., Zhu, Z.-G., Cui, H.-J., Zheng, Q.-R., Su, G., First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and möbius strips (2014) Carbon, 71, pp. 150-158
dc.relation.referencesRajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125
dc.relation.referencesYuan, P., Zhang, Z., Fan, Z., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536
dc.relation.referencesHe, C., Wang, X., Zhang, W., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865
dc.relation.referencesAvramov, P., Demin, V., Luo, M., Choi, C.H., Sorokin, P.B., Yakobson, B., Chernozatonskii, L., Translation symmetry breakdown in low-dimensional lattices of pentagonal rings (2015) J. Phys. Chem. Lett., 6, pp. 4525-4531
dc.relation.referencesLiu, J., He, C., Jiao, N., Xiao, H., Zhang, K., Wang, R., Sun, L., Novel Two-Dimensional SiC2 Sheet with Full Pentagon Network (2013), arXiv preprint arXiv:1307.6324
dc.relation.referencesTogo, A., Oba, F., Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures (2008) Phys. Rev. B, 78, p. 134106
dc.relation.referencesTogo, A., Tanaka, I., First principles phonon calculations in materials science (2015) Scripta Mater., 108, pp. 1-5
dc.relation.referencesYagmurcukardes, M., Sahin, H., Kang, J., Torun, E., Peeters, F.M., Senger, R.T., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) J. Appl. Phys., 118, p. 104303
dc.relation.referencesDresselhaus, M.S., Dresselhaus, G., Jorio, A., Group Theory - Applications to the Physics of Condensed Matter (2008), Springer Berlin
dc.relation.referencesHahn, T., Shmueli, U., Wilson, A.J.C., International Union of Crystallography, International Tables for Crystallography (1984), D. Reidel Pub. Co
dc.relation.referencesAroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H., Bilbao Crystallographic Server: I. Databases and crystallographic computing programs (2006) Z. Kristallogr. - Cryst. Mater., 221, pp. 15-27
dc.relation.referencesDamnjanovi?, M., Milo evi?, I., Line Groups in Physics (2010), Springer Berlin
dc.relation.referencesGallego, S.V., Tasci, E.S., de la Flor, G., Perez-Mato, J.M., Aroyo, M.I., IUCr, Magnetic symmetry in the Bilbao Crystallographic Server: a computer program to provide systematic absences of magnetic neutron diffraction (2012) J. Appl. Crystallogr., 45, pp. 1236-1247
dc.relation.referencesPerez-Mato, J., Gallego, S., Tasci, E., Elcoro, L., de la Flor, G., Aroyo, M., Symmetry-based computational tools for magnetic crystallography (2015) Annu. Rev. Mater. Res., 45, pp. 217-248
dc.relation.referencesLitvin, D.B., (2013) Magnetic Group Tables, , International Union of Crystallography Chester, England
dc.relation.referencesStokes, H.T., Hatch, D.M., Campbell, B.J., Magnetic space groups (2015), https://stokes.byu.edu/iso/magneticspacegroups.php, (ISO-MAG, ISOTROPY Software Suite, iso.byu.edu)
dc.relation.referencesZheng, G., Ke, S.-H., Miao, M., Kim, J., Ramesh, R., Kioussis, N., Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition (2017) Sci. Rep., 7, p. 5366
dc.relation.referencesBahuguna, B.P., Saini, L.K., Tiwari, B., Sharma, R.O., Electric field induced insulator to metal transition in a buckled GaAs monolayer (2016) RSC Adv., 6, pp. 52920-52924
dc.relation.referencesWu, J., Yang, Y., Gao, H., Qi, Y., Zhang, J., Qiao, Z., Ren, W., Electric field effect of GaAs monolayer from first principles (2017) AIP Adv., 7
dc.relation.referencesLiu, L., Ren, X., Xie, J., Cheng, B., Hu, J., Modulation of Magnetism via Electric Field in Mgonanoribbons (2019), arXiv preprint arXiv:1905.02328
dc.relation.referencesLi, X., Wu, X., Li, Z., Yang, J., Hou, J., Bipolar magnetic semiconductors: a new class of spintronics materials (2012) Nanoscale, 4, pp. 5680-5685
dc.relation.referencesSon, Y., Cohen, M.L., Louie, S.G., Half-metallic graphene nanoribbons (2006) Nature, 444, p. 347
dc.relation.referencesVanderbilt, D., Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (2018), Cambridge University Press Cambridge
dc.relation.referencesResta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach (1994) Rev. Mod. Phys., 66, pp. 899-915
dc.relation.referencesPowell, R.C., Symmetry, Group Theory, and the Physical Properties of Crystals (2010), Springer New York
dc.relation.referencesVanderbilt, D., First-principles theory of polarization and electric fields in ferroelectrics (2004) Ferroelectrics, 301, pp. 9-14
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem