Show simple item record

dc.creatorAlexander Vega J.
dc.date2019
dc.date.accessioned2020-04-29T14:53:44Z
dc.date.available2020-04-29T14:53:44Z
dc.identifier.issn17578981
dc.identifier.urihttp://hdl.handle.net/11407/5709
dc.descriptionThe study of geo-hazards has been benefited from the technological advances in the field of Remote Sensing (RS) techniques as the ALS (Airborne Laser Scanners) Systems with Very High Resolution (VHR) cameras. Recently, the LiDAR (Light Detection and Ranging) is an active sensor technique used for a variety of geoscientific applications including slope monitoring to retrieve ground surface displacements at high spatial resolution. Additionally, LiDAR has been widely used in order to collect high-resolution information on forests structure for the determination and characterization of vegetation cover due its ability to capture multiple returns and to reach the ground, even in forested areas, allowing the generation of Digital Terrain Models (DTMs) for the estimation of forest variables. In this paper, a LiDAR dataset and VHR imagery from aerial survey was used in the southwest zone of Medellín City-Colombia where the most frequent landslides are shallow and triggered by rainfall. Slopes with gradients up to 30% on residual soils characterize the study area, having about of 30% of forest cover consisting predominantly of Eucalyptus and Coniferous forests. For the estimation of the tree roots effects on the shallow landslides assessment on a natural slope, interpolation processes were developed from the LiDAR 3D point cloud, obtaining DTMs of 1 m-pixel. Additionally, orthophotos with the same spatial resolution were acquired in the aerial campaign. The proposed workflow was implemented on a GIS platform, and considers the extraction of the tree heights by generating a Canopy Height Model (CHM), while for the delineation of the tree crown a process of image segmentation was developed. Once the vegetation has been characterized using LiDAR products and dendrometric relationships, the Limit Equilibrium Method (LEM) was used to evaluate slope stability considering the effect of vegetation (trees). The results indicate that the proposed workflow allows to obtain adequate stability indicators for the estimation of tree roots contribution and additionally, this RS technique allows saving resources in this kind of analysis. © Published under licence by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072964539&doi=10.1088%2f1757-899X%2f603%2f2%2f022010&partnerID=40&md5=d3d078b726a8310e35e686f31165c900
dc.sourceIOP Conference Series: Materials Science and Engineering
dc.subjectAntennas
dc.subjectImage resolution
dc.subjectImage segmentation
dc.subjectLandslides
dc.subjectOptical radar
dc.subjectRemote sensing
dc.subjectSurveys
dc.subjectUrban planning
dc.subjectVegetation
dc.subjectAirborne laser scanners
dc.subjectDigital terrain model
dc.subjectHigh spatial resolution
dc.subjectLIDAR (light detection and ranging)
dc.subjectLimit equilibrium methods
dc.subjectRemote sensing techniques
dc.subjectStability indicators
dc.subjectTechnological advances
dc.subjectForestry
dc.titleThe Use of Lidar Data and VHR Imagery to Estimate the Effects of Tree Roots on Shallow Landslides Assessment
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.identifier.doi10.1088/1757-899X/603/2/022010
dc.relation.citationvolume603
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationAlexander Vega, J., School of Engineering, Civil Engineering Program, University of Medellin, Colombia
dc.relation.referencesRossi, L.M.W., Rapidel, B., Roupsard, O., Villatoro-Sánchez, M., Mao, Z., Nespoulous, J., Perez, J., Stokes, A., Sensitivity of the landslide model LAPSUS-LS to vegetation and soil parameters (2017) Ecol. Eng., 109, pp. 249-255
dc.relation.referencesGiadrossich, F., Schwarz, M., Cohen, D., Cislaghi, A., Vergani, C., Hubble, T., Phillips, C., Stokes, A., Methods to measure the mechanical behaviour of tree roots: A review (2017) Ecol. Eng., 109, pp. 256-271
dc.relation.referencesChen, W., Li, X., Wang, Y., Chen, G., Liu, S., Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China (2014) Remote Sens. Environ., 152, pp. 291-301
dc.relation.referencesKromer, R.A., Hutchinson, D.J., Lato, M.J., Gauthier, D., Edwards, T., Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management (2015) Eng. Geol., 195, pp. 93-103
dc.relation.referencesVanneschi, C., Eyre, M., Francioni, M., Coggan, J., The Use of Remote Sensing Techniques for Monitoring and Characterization of Slope Instability (2017) Procedia Eng., 191, pp. 150-157
dc.relation.referencesLisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery (2013) Forests, 4, pp. 922-944
dc.relation.referencesDandois, J.P., Ellis, E.C., High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision (2013) Remote Sens. Environ., 136, pp. 259-276
dc.relation.referencesThe, T., Giha, V., Minseok, L., (2016) Shallow Landslide Assessment Considering the Influence of Vegetation Cover, 17, pp. 17-31
dc.relation.referencesVega, J.A., Hidalgo, C.A., Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings (2016) Geomorphology, 273, pp. 217-235
dc.relation.referencesKumar, V., (2012) Forest Inventory Parameters and Carbon Mapping from Airbone LiDAR, 1. , (University of Twente)
dc.relation.referencesWulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.C., The role of LiDAR in sustainable forest management (2008) For. Chron., 84, pp. 807-826
dc.relation.referencesWhite, J., Wulder, M., Vastaranta, M., Coops, N., Pitt, D., Woods, M., The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning (2013) Forests, 4, pp. 518-536
dc.relation.referencesTesfamichael, S.G., Van Aardt, J.A.N., Ahmed, F., Estimating plot-level tree height and volume of eucalyptus grandis plantations using small-footprint, discrete return lidar data (2010) Prog. Phys. Geogr., 34, pp. 515-540
dc.relation.referencesBrown, S., Gillespie, A., Lugo, A., Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data (1989) For. Sci., 35, pp. 881-902
dc.relation.referencesOspina, P.C.M., Hernández, R.R.J., Rodas, P.C.A., Urrego, J.B., Riaño, H.N.M., Aristizábal, V.F.A., Godoy, B.J.A., Osorio, L.O.I., (2006) El Eucalipto/Eucalyptus Grandis/W. Hill Ex Maiden. Guías Silviculturales Para El Manejo de Especies Forestales Con Miras a la Producción de Madera en la Zona Andina Colombiana, 1. , 958 97441-7-6 Cenicafé, Ed
dc.relation.referencesKokutse, N., Fourcaud, T., Kokou, K., Neglo, K., Lac, P., 3D Numerical Modelling and Analysis of the Influence of Forest Structure on Hill Slopes Stability (2006) Disaster Mitig. Debris Flows, Slope Fail. Landslides, pp. 561-567
dc.relation.referencesTemgoua, A.G.T., Kokutse, N.K., Kavazovi?, Z., Influence of forest stands and root morphologies on hillslope stability (2016) Ecol. Eng., 95, pp. 622-634
dc.relation.referencesHubble, T.C.T., Docker, B.B., Rutherfurd, I.D., The role of riparian trees in maintaining riverbank stability: A review of Australian experience and practice (2010) Ecol. Eng., 36, pp. 292-304
dc.relation.referencesForestry Comission, G., Recommended Community Tree Ordinance Tree Conservation Standards
dc.relation.referencesChiaradia, E.A., Vergani, C., Bischetti, G.B., Evaluation of the effects of three European forest types on slope stability by field and probabilistic analyses and their implications for forest management (2016) For. Ecol. Manage., 370, pp. 114-129
dc.relation.referencesHall, D.E., Long, M.T., Remboldt, M.D., Hall, D.E., Long, M.T., Remboldt, M.D., (1994) Slope Stability Reference Guide for National Forest in the United States, 2. , Hall D. E., Long M. T. and Remboldt M. D. ed D.E Hall, M.T Long and M.D Remboldt (Washington D.C: United States Department of Agriculture - Forest Service) 0-16-045365-8
dc.relation.referencesMao, Z., Yang, M., Bourrier, F., Fourcaud, T., Evaluation of root reinforcement models using numerical modelling approaches (2014) Plant Soil, 381
dc.relation.referencesHubble, T.C.T., Airey, D.W., Sealey, H.K., De Carli, E.V., Clarke, S.L., A little cohesion goes a long way: Estimating appropriate values of additional root cohesion for evaluating slope stability in the Eastern Australian highlands (2013) Ecol. Eng., 61, pp. 621-632
dc.relation.referencesDocker, B.B., Hubble, T.C.T., Quantifying root-reinforcement of river bank soils by four Australian tree species (2008) Geomorphology, 100, pp. 401-418
dc.relation.referencesDocker, B.B., Hubble, T.C.T., Modelling the distribution of enhanced soil shear strength beneath riparian trees of south-eastern Australia (2009) Ecol. Eng., 35, pp. 921-934
dc.relation.referencesWu, T.H., McKinnell, W.P., Swanston, D.N., Strength of tree roots and landslides on Prince of Wales Island, Alaska (1979) Can. Geotech. J., 16, pp. 19-33. , Wu T. H., McKinnell W. P. III and Swanston D. N
dc.relation.referencesHolsworth, L., (2014) Numerical Analysis of Vegetation Effects on Slope Stability
dc.relation.referencesCoder, K.D., (2014) Tree Anchorage & Root Strength, 1
dc.relation.referencesGenet, M., Stokes, A., Fourcaud, T., Norris, J.E., The influence of plant diversity on slope stability in a moist evergreen deciduous forest (2010) Ecol. Eng., 36, pp. 265-275
dc.relation.referencesHubble, T.C.T., Rutherfurd, I.D., Evaluating the relative contributions of vegetation and flooding in controlling channel widening: The case of the Nepean River, Southeastern Australia (2010) Aust. J. Earth Sci., 57, pp. 525-541
dc.relation.referencesGupta, A., Relative Effectiveness of Trees and Shrubs on Slope Stability (2016) Electron. J. Geotech. Eng., 21, pp. 737-753
dc.relation.references(2010) Colombian Code for Earthquake-resistant Construction (NSR-10). Association of Earthquake Engineering, , (Bogotá-Colombia)
dc.relation.referencesFoxx, T.S., Tierney, G.D., Williams, J.M., (1984) Rooting Depths of Plants Relative to Biological and Environmental Factors, 26
dc.relation.referencesSchwarz, M., Preti, F., Giadrossich, F., Lehmann, P., Or, D., Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy) (2010) Ecol. Eng., 36, pp. 285-291
dc.relation.referencesGrupo Empresarial ENCE La gestión forestal sostenible y el eucalipto. 2009, 74
dc.relation.referencesCorporación Suna Hisca Plantaciones de especies forestales (2003) Parq. Ecol. Dist. Montaña Entren., pp. 246-266
dc.relation.referencesMontrasio, L., Schilirò, L., Terrone, A., Physical and numerical modelling of shallow landslides (2016) Landslides, 13, pp. 873-883
dc.relation.referencesMaffra, C.R.B., De Moraes, M.T., Sousa, R.D.S., Sutili, F.J., Pinheiro, R.J.B., Soares, J.M.D., Métodos de Avaliação da Influência E Contribuição das Plantas Sobre a Estabilidade de Taludes (2017) Sci. Agrar., 18, p. 129
dc.relation.referencesMoos, C., Bebi, P., Graf, F., Mattli, J., Rickli, C., Schwarz, M., How does forest structure affect root reinforcement and susceptibility to shallow landslides? (2016) Earth Surf. Process. Landforms, 41
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record