Mostrar el registro sencillo del ítem

dc.creatorUngan F.
dc.creatorBahar M.K.
dc.creatorMora-Ramos M.E.
dc.date2020
dc.date.accessioned2020-04-29T14:53:50Z
dc.date.available2020-04-29T14:53:50Z
dc.identifier.issn318949
dc.identifier.urihttp://hdl.handle.net/11407/5739
dc.descriptionWe present a theoretical investigation about the the influence of external electric, magnetic and non-resonant intense laser fields on intersubband-related second harmonics generation (SHG) and the nonlinear optical rectification (NOR) coefficients in n-type asymmetric triple ?-doped quantum wells (QWs). A particular design of asymmetric triple ?-doped QW with L w = 200 Å width and, respectively, in the left side, central and right side, and doping concentrations is taken into account. For QWs under the combined effect of the external electric, magnetic and laser fields, the time-dependent wave equation is modified by using Kramers-Henneberger transformation and the dipole approximation. The subband energy spectra and the electronic wave functions are obtained by solving numerically the wave equation. The originality of this work can be presented as; (i) The results explain NOR and SHG characteristics of triple QW depending on external field effects in detail. The effects of the electric, magnetic and laser field on transition energies and NOR, SHG characteristics are presented detail. (ii) In addition to, the alternativeness to each other of the external fields is discussed by probing the features of SHG and NOR under the strong and weak regimes of external fields. (iii) These nonlinear optical responses to the external fields are compared, researching the optimum cases for these optical specifications. (iv) The control of SHG through the external fields in triple ?-doped QWs reveals to be easier and more precise. © 2020 IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85082308043&doi=10.1088%2f1402-4896%2fab7a37&partnerID=40&md5=2df37de5db4d9bc971d46ec9e5f12ba1
dc.sourcePhysica Scripta
dc.subjectElectric rectifiers
dc.subjectMagnetic field effects
dc.subjectNonlinear optics
dc.subjectOptical properties
dc.subjectQuantum well lasers
dc.subjectSemiconductor quantum wells
dc.subjectWave equations
dc.subjectWave functions
dc.subjectDipole approximation
dc.subjectDoping concentration
dc.subjectElectronic wave functions
dc.subjectNonlinear optical rectification
dc.subjectNonlinear optical response
dc.subjectOptical specifications
dc.subjectTheoretical investigations
dc.subjectTime-dependent wave equations
dc.subjectHarmonic generation
dc.titleOptical properties of n-type asymmetric triple ?-doped quantum well under external fields
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1088/1402-4896/ab7a37
dc.relation.citationvolume95
dc.relation.citationissue5
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationUngan, F., Department of Optical Engineering, Faculty of Technology, Sivas Cumhuriyet University, Sivas, 58140, Turkey; Bahar, M.K., Department of Physics, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey; Mora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma Del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca, CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesDingle, R., Störmer, H.L., Gossard, A.C., Wiegman, W.W., (1978) Appl. Phys. Lett., 33, p. 665
dc.relation.referencesStörmer, H.L., Dingle, R., Gossard, A.C., Wiegman, W.W., Sturge, M.D., (1979) J. Vac Sci. Technol., 16, p. 1517
dc.relation.referencesKe, M.L., Rimmer, J.S., Hamilton, B., Evans, J.H., Missous, M., Singer, K.E., Zalm, P., (1992) Phys. Rev., 45, p. 14114
dc.relation.referencesNakazato, K., Blaikie, R.J., Ahmed, H., (1994) J. Appl. Phys., 75, p. 5123
dc.relation.referencesOsvald, J., (2004) Physica, 23, p. 147
dc.relation.referencesGaggero-Sager, L.M., Mora-Ramos, M.E., (2000) Solid-State Electron., 44, p. 1
dc.relation.referencesRodríguez-Vargas, I., Gaggero-Sager, L.M., (2005) Phys. Status Solidi, 2, p. 3634
dc.relation.referencesBahrami, A., (2019) Chin. Phys., 28 (4)
dc.relation.referencesUngan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, p. 76
dc.relation.referencesNoverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Int. J. Mod. Phys., 33
dc.relation.referencesMohanty, S.S., Mishra, S., Mohanty, S., Mishra, G.P., (2019) Devices for Integrated Circuit (DevIC), p. 53
dc.relation.referencesDai, Q., (2009) Appl. Phys. Lett., 94
dc.relation.referencesLee, K.J., (2019) Nano Lett., 19, p. 3535
dc.relation.referencesTanimu, A., Muljarov, E.A., (2018) Journal of Physics Communications, 2 (11)
dc.relation.referencesPacheco, M., Barticevic, Z., Latge, A., (2001) Physica B, 302, p. 77
dc.relation.referencesBetancourt-Riera, R., Rosas, R., Marin-Enriquez, I., Riera, R., Marin, J.L., (2005) J. Phys. Condens. Matter, 17 (28), p. 4451
dc.relation.referencesFukuta, S., Goto, H., Sawaki, N., Suzuki, T., Ito, H., Hara, K., (1993) Semicond. Sci. Technol., 8 (10), p. 1881
dc.relation.referencesRestrepo, R.L., Castano-Vanegas, L.F., Martínez-Orozco, J.C., Morales, A.L., Duque, C.A., (2019) Appl. Phys., 125, p. 31
dc.relation.referencesKoechner, W., (1965) Solid-State Laser Engineering, p. 507
dc.relation.referencesMou, S., Guo, K., Liu, G., Xiao, B., (2014) Phys., 434, p. 84
dc.relation.referencesYuan, J.H., Chen, N., Mo, H., Zhang, Y., Zhang, Z.H., (2015) Superlatt. Micro., 88, p. 389
dc.relation.referencesNautiyal, V.V., Silotia, P., (2018) Phys. Lett., 382, p. 2061
dc.relation.referencesTonouchi, M., (2007) Nature Photon., 31, p. 97
dc.relation.referencesRazzari, L., (2009) Phys. Rev., 79
dc.relation.referencesDanielson, J.R., Lee, Y.S., Prineas, J.P., Steiner, J.T., Kira, M., Koch, S.W., (2007) Phys. Rev. Lett., 99
dc.relation.referencesYu, Q., Guo, K., Hu, M., (2019) Sci. Rep., 9, p. 2278
dc.relation.referencesUngan, F., Mora-Ramos, M.E., Yesilgul, U., Sari, H., Skmen, I., (2019) Phys., 111, p. 167
dc.relation.referencesVilleneuve, A., Yang, C.C., Wigley, P.G.J., Stegeman, G.I., (1992) Appl. Phys. Lett., 61, p. 147
dc.relation.referencesEaton, D.F., (1991) Scien., 253, p. 281
dc.relation.referencesLaud, B.B., (1992) Lasers and Nonlinear Optics
dc.relation.referencesMarciniak, M., Kowalewski, M., (2000) J. Telecommun. Infor. Tech., 1-2, p. 3
dc.relation.referencesIoriatti, L., (1990) Phys. Rev., 41, p. 8340
dc.relation.referencesGaggero-Sager, L.M., Perez-Alvarez, R., (1995) J. Appl. Phys., 78, p. 4566
dc.relation.referencesKramers, H.A., (1956) Collected Scientific Paper
dc.relation.referencesHenneberger, W.C., (1968) Phys. Rev. Lett., 21, p. 838
dc.relation.referencesBransden, B.H., Joachain, C.J., (2003) Physics of Atoms and Molecules
dc.relation.referencesEhlotzky, F., (1985) Can. J. Phys., 63, p. 907
dc.relation.referencesEhlotzky, F., (1988) Phys. Lett., 126, p. 524
dc.relation.referencesGavrila, M., Kaminski, J.Z., (1984) Phys. Rev. Lett., 52, p. 613
dc.relation.referencesBahar, M.K., (2015) Phys. Plasmas, 22
dc.relation.referencesYu, Y.B., Wang, H.J., (2011) Superlatt. Microstr., 50, p. 252
dc.relation.referencesRezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K., Karimi, M.J., (2010) Superlatt. Microstr., 48, p. 450
dc.relation.referencesBoyd, R.W., (2007) Nonlinear Optics
dc.relation.referencesRodriguez-Magdaleno, K.A., Martinez-Orozco, J.C., Rodriguez-Vargas, I., Mora-Ramos, M.E., Duque, C.A., (2014) J. Luminescence, 147, p. 77
dc.relation.referencesSoylu, A., (2012) Ann. Phys., 327, p. 3048
dc.relation.referencesEl-Said, M., (1995) J. Phys. i France, 5, p. 1027
dc.relation.referencesRazeghi, M., (2010) Technology of Quantum Devices, pp. 271-321
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem