REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies

Thumbnail
Share this
Author
Zuluaga-Hernández E.A.
Flórez E.
Dorkis L.
Mora-Ramos M.E.
Correa J.D.

Citación

       
TY - GEN T1 - Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies AU - Zuluaga-Hernández E.A. AU - Flórez E. AU - Dorkis L. AU - Mora-Ramos M.E. AU - Correa J.D. UR - http://hdl.handle.net/11407/5740 PB - John Wiley and Sons Inc. AB - Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc. ER - @misc{11407_5740, author = {Zuluaga-Hernández E.A. and Flórez E. and Dorkis L. and Mora-Ramos M.E. and Correa J.D.}, title = {Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies}, year = {}, abstract = {Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc.}, url = {http://hdl.handle.net/11407/5740} }RT Generic T1 Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies A1 Zuluaga-Hernández E.A. A1 Flórez E. A1 Dorkis L. A1 Mora-Ramos M.E. A1 Correa J.D. LK http://hdl.handle.net/11407/5740 PB John Wiley and Sons Inc. AB Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Blue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc.
URI
http://hdl.handle.net/11407/5740
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com