Mostrar el registro sencillo del ítem

dc.creatorZuluaga-Hernández E.A.
dc.creatorFlórez E.
dc.creatorDorkis L.
dc.creatorMora-Ramos M.E.
dc.creatorCorrea J.D.
dc.date2020
dc.date.accessioned2020-04-29T14:53:50Z
dc.date.available2020-04-29T14:53:50Z
dc.identifier.issn207608
dc.identifier.urihttp://hdl.handle.net/11407/5740
dc.descriptionBlue phosphorene is an attractive nanomaterial that exhibits some remarkable optoelectronic properties. Various studies have verified its ability to adsorb gaseous compounds and, in particular, to dissociate O2, forming covalent bonds between phosphorus and oxygen atoms. These covalent bonds could be the reason behind the oxidation reaction that affects the blue phosphorene in normal room conditions. Theoretically, it has been demonstrated that the blue phosphorene oxide (BPO) is just as stable as the blue phosphorene. Given that metallic oxides are widely used as catalyzers and gas sensors, this opens the possibility of the BPO being presented as a gas sensor as well. For all the above, in this work the optoelectronic properties of BPO were studied, along with the generation of the oxygen vacancies. The investigation was performed within the density functional theory (DFT). In the study of the oxygen vacancy, the formation energy was calculated, and the results are similar to the formation energies of oxygen vacancies in other known oxides. It was found that the BPO with a single vacancy has a favorable energetic stability. The characterization of the vacancy is achieved using the electronic structure and the optical response. Additionally, the analysis of the adsorption of a hydrogen atom on the BPO, and the subsequent formation of hydroxide is presented. © 2019 Wiley Periodicals, Inc.
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074323263&doi=10.1002%2fqua.26075&partnerID=40&md5=47f44558cb3cf0860ed6f8a6f2753f14
dc.sourceInternational Journal of Quantum Chemistry
dc.subjectBlue Phosphorene Oxide
dc.subjectDFT
dc.subjectoxygen vacancies
dc.subjectphosphorene
dc.subjectAtoms
dc.subjectChemical sensors
dc.subjectDensity functional theory
dc.subjectElectronic properties
dc.subjectElectronic structure
dc.subjectGas detectors
dc.subjectMetallic compounds
dc.subjectMetals
dc.subjectEnergetic stability
dc.subjectFormation energies
dc.subjectGaseous compounds
dc.subjectOptical response
dc.subjectOptoelectronic properties
dc.subjectOxidation reactions
dc.subjectphosphorene
dc.subjectSingle vacancies
dc.subjectOxygen vacancies
dc.titleOpto-electronic properties of blue phosphorene oxide with and without oxygen vacancies
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1002/qua.26075
dc.relation.citationvolume120
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationZuluaga-Hernández, E.A., Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia; Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Dorkis, L., Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigaci?n en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesCao, C., Wu, M., Jiang, J., Cheng, H.-P., (2010) Phys. Rev. B, 81, p. 205424
dc.relation.referencesMannix, A.J., Kiraly, B., Hersam, M.C., Guisinger, N.P., (2017) Nat. Rev. Chem., 1, p. 0014
dc.relation.referencesRatinac, K.R., Yang, W., Ringer, S.P., Braet, F., (2010) Environ. Sci. Technol., 44, p. 1167
dc.relation.referencesSun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., (2016) Solid State Commun., 242, p. 36
dc.relation.referencesWang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699
dc.relation.referencesZhou, S., Liu, N., Zhao, J., (2017) Comput. Mater. Sci., 130, p. 56
dc.relation.referencesYang, S., Jiang, C., Wei, S.-H., (2017) Appl Phys. Rev., 4, p. 021304
dc.relation.referencesLiu, N., Zhou, S., (2017) Nanotechnology, 28, p. 175708
dc.relation.referencesAtaca, C., Ciraci, S., (2010) Phys. Rev. B, 82, p. 165402
dc.relation.referencesAtaca, C., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 13303
dc.relation.referencesDing, Y., Wang, Y., (2015) J. Phys. Chem. C, 119, p. 10610
dc.relation.referencesKuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Warren, S.C., (2017) ACS Appl. Mater. Interfaces, 9, p. 9126
dc.relation.referencesBagheri, S., Mansouri, N., Aghaie, E., (2016) Int. J. Hydrogen Energy, 41, p. 4085
dc.relation.referencesXia, F., Wang, H., Jia, Y., (2014) Nat. Commun., 5, p. 4458
dc.relation.referencesKou, L., Frauenheim, T., Chen, C., (2014) J. Phys. Chem. Lett., 5, p. 2675
dc.relation.referencesAbbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., (2015) ACS Nano, 9, p. 5618
dc.relation.referencesZhu, Z., Tománek, D., (2014) Phys. Rev. Lett., 112, p. 176802
dc.relation.referencesZhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., (2016) Nano Lett., 16, p. 4903
dc.relation.referencesSun, M., Tang, W., Ren, Q., Wang, S.-K., Yu, J., Du, Y., (2015) Appl. Surf. Sci., 356, p. 110
dc.relation.referencesSrivastava, P., Hembram, K., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S., (2015) J. Phys. Chem. C, 119, p. 6530
dc.relation.referencesAgnihotri, S., Rastogi, P., Chauhan, Y.S., Agarwal, A., Bhowmick, S., (2018) J. Phys. Chem. C, 122, p. 5171
dc.relation.referencesXie, J., Si, M., Yang, D., Zhang, Z., Xue, D., (2014) J. Appl. Phys., 116, p. 073704
dc.relation.referencesOspina, D., Duque, C., Correa, J., Morell, E.S., (2016) Superlattices Microstruct., 97, p. 562
dc.relation.referencesSafari, F., Moradinasab, M., Fathipour, M., Kosina, H., (2019) Appl. Surf. Sci., 464, p. 153
dc.relation.referencesWang, B.-J., Li, X.-H., Cai, X.-L., Yu, W.-Y., Zhang, L.-W., Zhao, R.-Q., Ke, S.-H., (2018) J. Phys. Chem. C, 122, p. 7075
dc.relation.referencesYi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., (2019) Adv. Mate. Interfaces, 6, p. 1801175
dc.relation.referencesHao, F., Liao, X., Li, M., Xiao, H., Chen, X., (2018) J. Phys.: Condens. Matter, 30, p. 315302
dc.relation.referencesZiletti, A., Carvalho, A., Trevisanutto, P., Campbell, D., Coker, D., Neto, A.C., (2015) Phys. Rev. B, 91, p. 085407
dc.relation.referencesLee, S., Kang, S.-H., Kwon, Y.-K., (2019) Sci. Rep., 9, p. 5149
dc.relation.referencesHuang, L., Li, J., (2016) Appl. Phys. Lett., 108, p. 083101
dc.relation.referencesYu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y., (2016) Nanoscale Res. Lett., 11, p. 77
dc.relation.referencesZhu, X., Zhang, T., Sun, Z., Chen, H., Guan, J., Chen, X., Ji, H., Yang, S., (2017) Adv. Mater., 29, p. 1605776
dc.relation.referencesWang, Z., Zhao, D., Yu, S., Nie, Z., Li, Y., Zhang, L., (2019) Prog. Nat. Sci.: Mater. Int., 29, p. 316
dc.relation.referencesWang, G., Pandey, R., Karna, S.P., (2015) Nanoscale, 7, p. 524
dc.relation.referencesIrshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., (2018) J. Ind. Eng. Chem., 64, p. 60
dc.relation.referencesZhu, L., Wang, S.-S., Guan, S., Liu, Y., Zhang, T., Chen, G., Yang, S.A., (2016) Nano Lett., 16, p. 6548
dc.relation.referencesZhang, J.L., Zhao, S., Telychko, M., Sun, S., Lian, X., Su, J., Tadich, A., Chen, W., (2019) Nano Lett., 19, p. 5340
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745
dc.relation.referencesDion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett., 92, p. 246401
dc.relation.referencesKlime , J., Bowler, D.R., Michaelides, A., (2009) J. Phys.: Condens. Matter, 22, p. 022201
dc.relation.referencesOspina, D., Duque, C., Mora-Ramos, M., Correa, J., (2017) Comput. Mater. Sci., 135, p. 43
dc.relation.referencesDeml, A.M., Stevanovi?, V., Muhich, C.L., Musgrave, C.B., O'Hayre, R., (2014) Energy Environ. Sci., 7, p. 1996
dc.relation.referencesCai, Y., Ke, Q., Zhang, G., Yakobson, B.I., Zhang, Y.-W., (2016) J. Am. Chem. Soc., 138, p. 10199
dc.relation.referencesKistanov, A.A., Cai, Y., Zhou, K., Dmitriev, S.V., Zhang, Y.-W., (2016) 2D Mater., 4, p. 015010
dc.relation.referencesKong, L.-J., Liu, G.-H., Zhang, Y.-J., (2016) RSC Adv., 6, p. 10919
dc.relation.referencesAierken, Y., Çak?r, D., Sevik, C., Peeters, F.M., (2015) Phys. Rev. B, 92, p. 081408
dc.relation.referencesGanduglia-Pirovano, M.V., Hofmann, A., Sauer, J., (2007) Surf. Sci. Rep., 62, p. 219
dc.relation.referencesMahabal, M.S., Deshpande, M.D., Hussain, T., Ahuja, R., (2016) J. Phys. Chem. C, 120, p. 20428
dc.relation.referencesNørskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H., (2009) Nat. Chem., 1, p. 37
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem