dc.creator | Bikerouin M. | |
dc.creator | Balli M. | |
dc.creator | Farkous M. | |
dc.creator | El-Yadri M. | |
dc.creator | Dujardin F. | |
dc.creator | Abdellah A.B. | |
dc.creator | Feddi E. | |
dc.creator | Correa J.D. | |
dc.creator | Mora-Ramos M.E. | |
dc.date | 2020 | |
dc.date.accessioned | 2020-04-29T14:54:01Z | |
dc.date.available | 2020-04-29T14:54:01Z | |
dc.identifier.issn | 406090 | |
dc.identifier.uri | http://hdl.handle.net/11407/5791 | |
dc.description | In this study, we have investigated the effect of bi-axial, ?ab, and uni-axial, ?c, strains on the optoelectronic properties of chalcopyrite semiconductor CuGaSe2 through first-principles full potential linearized augmented plane wave method. These materials have recently attracted much interest within the materials science community. The results are obtained in the framework of Density Functional Theory (DFT), using the Generalized Gradient Approximation based on the minimization of total energy, together with the modified Becke-Johnson exchange-correlation potential, as implemented in the WIEN2k code. Our results show that unstrained CuGaSe2 is a direct band gap semiconductor with a energy of 1.16 eV, thus improving the results of some previous DFT calculations, but still below the accepted experimental data. The incorporation of biaxial and uniaxial strain results in a monotonous decreasing behavior of the energy band gap when both ?ab and ?c change between -8% and +8%, with unstrained value being, approximately, at the middle of the variation range. It is also found that strain causes modifications in the index of refraction of the material, with modifications of its static value that rank above 10% over the entire range of deformations considered. © 2019 Elsevier B.V. | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077507438&doi=10.1016%2fj.tsf.2019.137783&partnerID=40&md5=071c6b7c2e38e26006b05d729ca94e4e | |
dc.source | Thin Solid Films | |
dc.subject | Copper gallium selenide | |
dc.subject | Density functional theory | |
dc.subject | Electronic properties | |
dc.subject | First-principle calculations | |
dc.subject | Optical properties | |
dc.subject | Strain effect | |
dc.subject | Calculations | |
dc.subject | Copper compounds | |
dc.subject | Deformation | |
dc.subject | Electronic properties | |
dc.subject | Energy gap | |
dc.subject | Layered semiconductors | |
dc.subject | Optical lattices | |
dc.subject | Optical properties | |
dc.subject | Refractive index | |
dc.subject | Selenium compounds | |
dc.subject | Semiconducting gallium compounds | |
dc.subject | Semiconducting selenium compounds | |
dc.subject | Strain | |
dc.subject | Direct band gap semiconductors | |
dc.subject | Electronic and optical properties | |
dc.subject | Exchange-correlation potential | |
dc.subject | First principle calculations | |
dc.subject | Full potential linearized augmented plane wave method | |
dc.subject | Gallium selenides | |
dc.subject | Generalized gradient approximations | |
dc.subject | Strain effect | |
dc.subject | Density functional theory | |
dc.title | Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Facultad de Ciencias Básicas | |
dc.identifier.doi | 10.1016/j.tsf.2019.137783 | |
dc.relation.citationvolume | 696 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Bikerouin, M., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco, Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Balli, M., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco; Farkous, M., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco, Laboratoire des Systèmes Electriques et Télécommunications, Université Ibn Tofail, Kenitra, Morocco; El-Yadri, M., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Dujardin, F., LCP-A2MC, Université de Lorraine, Metz, France; Abdellah, A.B., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco, Laboratory of Engineering, Innovation and Management of Industrial Systems (LEIMIS), FST of Tangier, Abdelmalek Essaadi University, Morocco; Feddi, E., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos, Mexico | |
dc.relation.references | Zunger, A., Jaffe, J.E., Structural origin of optical bowing in semiconductor alloys (1983) Phys. Rev. Lett., 51, pp. 662-665 | |
dc.relation.references | Alonso, M.I., Wakita, K., Pascual, J., Garriga, M., Yamamoto, N., Optical functions and electronic structure of cuinse2, cugase2, cuins2, and cugas2 (2001) Phys. Rev. B, 63, p. 075203 | |
dc.relation.references | Parlak, C., Eryi?it, R., Ab initio volume-dependent elastic and lattice dynamical properties of chalcopyrite cugase2 (2006) Phys. Rev. B, 73, p. 245217 | |
dc.relation.references | Liu, F., Yang, J., Zhou, J., Lai, Y., Jia, M., Li, J., Liu, Y., One-step electrodeposition of cugase2 thin films (2012) Thin Sol. Films, 520, pp. 2781-2784 | |
dc.relation.references | Shay, J., Wernick, J., Ternary Chalcopyrite Crystals: Growth, Electronic Structure, and Applications (1975), Elsevier Oxford | |
dc.relation.references | Reshak, A.H., Linear, nonlinear optical properties and birefringence of aggax2 (x= s, se, te) compounds (2005) Physica B, 369, pp. 243-253 | |
dc.relation.references | Kumar, V., Tripathy, S.K., Jha, V., Second order nonlinear optical properties of aIbIIIc2 VI chalcopyrite semiconductors (2012) Appl. Phys. Lett., 101, p. 192105 | |
dc.relation.references | Samanta, L., Ghosh, D., Bhar, G., Optical nonlinearity, band-structure parameters, and refractive indices of some mixed chalcopyrite crystals (1986) Phys. Rev. B, 33, p. 4145 | |
dc.relation.references | Tinoco, T., Quintero, M., Rincón, C., Variation of the energy gap with composition in aIbIIIc2 VI chalcopyrite-structure alloys (1991) Phys. Rev. B, 44, p. 1613 | |
dc.relation.references | Wei, S.-H., Zunger, A., Band offsets and optical bowings of chalcopyrites and zn-based II-VI alloys (1995) J. Appl. Phys., 78, pp. 3846-3856 | |
dc.relation.references | Wu, J., Hirai, Y., Kato, T., Sugimoto, H., Bermudez, V., New world record efficiency up to 22.9% for cu(in,ga)(se,s)2 thin-film solar cells (2018) 7th World Conference on Photovoltaic Energy Conversion (WCPEC-7), pp. 10-15 | |
dc.relation.references | Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W., Solar cell efficiency tables (version 53) (2019) Prog Photovolt Res Appl., 27, pp. 3-12 | |
dc.relation.references | Salomé, P.M., Fjällström, V., Szaniawski, P., Leitão, J.P., Hultqvist, A., Fernandes, P.A., Teixeira, J.P., Edoff, M., A comparison between thin film solar cells made from co-evaporated cuin(1-x)ga(x)se2 using a one-stage process versus a three-stage process (2015) Prog. Photovolt. Res. Appl., 23, pp. 470-478 | |
dc.relation.references | Chiril?, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Tiwari, A.N., Highly efficient cu(in,ga)se2 solar cells grown on flexible polymer films (2011) Nat. Mater., 10 (11), p. 857 | |
dc.relation.references | Chopra, K., Paulson, P., Dutta, V., Thin-film solar cells: an overview (2004) Prog. Photovolt. Res. Appl., 12, pp. 69-92 | |
dc.relation.references | Harvey, T.B., Mori, I., Stolle, C.J., Bogart, T.D., Ostrowski, D.P., Glaz, M.S., Du, J., Korgel, B.A., Copper indium gallium selenide (cigs) photovoltaic devices made using multistep selenization of nanocrystal films (2013) ACS Appl. Mater. Interfaces, 5, pp. 9134-9140 | |
dc.relation.references | Ojajarvi, J., Rasanen, E., Sadewasser, S., Lehmann, S., Wagner, P., Lux-Steiner, M.C., Tetrahedral chalcopyrite quantum dots for solar-cell applications (2011) Appl. Phys. Lett., 99, p. 111907 | |
dc.relation.references | Stolle, C.J., Harvey, T.B., Pernik, D.R., Hibbert, J.I., Du, J., Rhee, D.J., Akhavan, V.A., Korgel, B.A., Multiexciton solar cells of cuinse2 nanocrystals (2014) J. Phys. Chem. Lett., 5, pp. 304-309 | |
dc.relation.references | Panthani, M.G., Stolle, C.J., Reid, D.K., Rhee, D.J., Harvey, T.B., Akhavan, V.A., Yu, Y., Korgel, B.A., Cuinse2 quantum dot solar cells with high open-circuit voltage (2013) J. Phys. Chem. Lett., 4, pp. 2030-2034 | |
dc.relation.references | Xin, B., Wu, Y., Zhang, N., Yu, H., Feng, W., High performance UV photodetector based on 2d non-layered cugas2 nanosheets (2019) Semicond. Sci. Technol., 34, p. 055007 | |
dc.relation.references | Soni, A., Dashora, A., Gupta, V., Arora, C.M., Rérat, M., Ahuja, B.L., Pandey, R., Electronic and optical modeling of solar cell compounds cugase2 and cuinse2 (2011) J. Electron. Mater., 40, pp. 2197-2208 | |
dc.relation.references | Nayebi, P., Mirabbaszadeh, K., Shamshirsaz, M., Density functional theory of structural, electronic and optical properties of cuXY2 (x=in, ga and y=s,se) chacopyrite semiconductors (2013) Physica B, 416, pp. 55-63 | |
dc.relation.references | Xue, H.-T., Tang, F.-L., Lu, W.-J., Feng, Y.-D., Wang, Z.-M., Wang, Y., First-principles investigation of structural phase transitions and electronic properties of cugase2 up to 100?GPa (2013) Comput. Mater. Sci., 67, pp. 21-26 | |
dc.relation.references | Pluengphon, P., Bovornratanaraks, T., Phase stability and elastic properties of cugase2 under high pressure (2015) Solid State Commun., 218, pp. 1-5 | |
dc.relation.references | Zhao, Z., Zhou, D., Yi, J., Analysis of the electronic structures of 3d transition metals doped cugas2 based on DFT calculations (2014) J. Semicond., 35, p. 013002 | |
dc.relation.references | Schwarz, K., Blaha, P., Madsen, G.K., Electronic structure calculations of solids using the wien2k package for material sciences (2002) Comput. Phys. Commun., 147, pp. 71-76 | |
dc.relation.references | Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.D., Wien2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (revised edition) (2018), Vienna University of Technology, Austria | |
dc.relation.references | Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces (2008) Phys. Rev. Lett., 100, p. 136406 | |
dc.relation.references | Tran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential (2009) Phys. Rev. Lett., 102, p. 226401 | |
dc.relation.references | Geilhufe, M., Nayak, S.K., Thomas, S., Däne, M., Tripathi, G.S., Entel, P., Hergert, W., Ernst, A., Effect of hydrostatic pressure and uniaxial strain on the electronic properties of pb1?xsnxte (2015) Phys. Rev. B, 92, p. 235203 | |
dc.relation.references | Sakata, K., Magyari-Köpe, B., Gupta, S., Nishi, Y., Blom, A., Deák, P., The effects of uniaxial and biaxial strain on the electronic structure of germanium (2016) Comput. Mater. Sci., 112 (A), pp. 263-268 | |
dc.relation.references | Delin, A., Ravindran, P., Eriksson, O., Wills, J.M., Full-potential optical calculations of lead chalcogenides (1998) Int. J. Quantum Chem., 69, pp. 349-358 | |
dc.relation.references | Garbato, L., Ledda, F., Rucci, A., Structural distortions and polymorphic behaviour in ABC2 and AB2c4 tetrahedral compounds (1987) Prog. Cryst. Growth Charact., 15, pp. 1-41 | |
dc.relation.references | Abrahams, S.C., Bernstein, J.L., Piezoelectric nonlinear optic cugase2 and cdgeas2: crystal structure, chalcopyrite microhardness, and sublattice distortion (1974) J. Chem. Phys., 61, pp. 1140-1146 | |
dc.relation.references | Chen, S., Gong, X.G., Wei, S.H., Band-structure anomalies of the chalcopyrite semiconductors cugax2 versus aggax2 (x=s and se) and their alloys (2007) Phys. Rev. B, 75, p. 205209 | |
dc.relation.references | Belhadj, M., Tadjer, A., Abbar, B., Bousahla, Z., Bouhafs, B., Aourag, H., Structural, electronic and optical calculations of cu(in,ga)se2 ternary chalcopyrites (2004) Phys. Status Solidi B, 241, pp. 2516-2528 | |
dc.relation.references | Spiess, H.W., Haeberlen, U., Brandt, G., Räuber, A., Schneider, J., Nuclear magnetic resonance in ib-III-VI2 semiconductors (1974) Phys. Status Solidi B, 62, pp. 183-192 | |
dc.relation.references | Gonzalez, J., Rincón, C., Optical absorption and phase transitions in cu-III-VI2 compounds semiconductors at high pressure (1990) J. Phys. Chem. Solids, 51, pp. 1093-1097 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |