Mostrar el registro sencillo del ítem

dc.creatorBikerouin M.
dc.creatorBalli M.
dc.creatorFarkous M.
dc.creatorEl-Yadri M.
dc.creatorDujardin F.
dc.creatorAbdellah A.B.
dc.creatorFeddi E.
dc.creatorCorrea J.D.
dc.creatorMora-Ramos M.E.
dc.date2020
dc.date.accessioned2020-04-29T14:54:01Z
dc.date.available2020-04-29T14:54:01Z
dc.identifier.issn406090
dc.identifier.urihttp://hdl.handle.net/11407/5791
dc.descriptionIn this study, we have investigated the effect of bi-axial, ?ab, and uni-axial, ?c, strains on the optoelectronic properties of chalcopyrite semiconductor CuGaSe2 through first-principles full potential linearized augmented plane wave method. These materials have recently attracted much interest within the materials science community. The results are obtained in the framework of Density Functional Theory (DFT), using the Generalized Gradient Approximation based on the minimization of total energy, together with the modified Becke-Johnson exchange-correlation potential, as implemented in the WIEN2k code. Our results show that unstrained CuGaSe2 is a direct band gap semiconductor with a energy of 1.16 eV, thus improving the results of some previous DFT calculations, but still below the accepted experimental data. The incorporation of biaxial and uniaxial strain results in a monotonous decreasing behavior of the energy band gap when both ?ab and ?c change between -8% and +8%, with unstrained value being, approximately, at the middle of the variation range. It is also found that strain causes modifications in the index of refraction of the material, with modifications of its static value that rank above 10% over the entire range of deformations considered. © 2019 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077507438&doi=10.1016%2fj.tsf.2019.137783&partnerID=40&md5=071c6b7c2e38e26006b05d729ca94e4e
dc.sourceThin Solid Films
dc.subjectCopper gallium selenide
dc.subjectDensity functional theory
dc.subjectElectronic properties
dc.subjectFirst-principle calculations
dc.subjectOptical properties
dc.subjectStrain effect
dc.subjectCalculations
dc.subjectCopper compounds
dc.subjectDeformation
dc.subjectElectronic properties
dc.subjectEnergy gap
dc.subjectLayered semiconductors
dc.subjectOptical lattices
dc.subjectOptical properties
dc.subjectRefractive index
dc.subjectSelenium compounds
dc.subjectSemiconducting gallium compounds
dc.subjectSemiconducting selenium compounds
dc.subjectStrain
dc.subjectDirect band gap semiconductors
dc.subjectElectronic and optical properties
dc.subjectExchange-correlation potential
dc.subjectFirst principle calculations
dc.subjectFull potential linearized augmented plane wave method
dc.subjectGallium selenides
dc.subjectGeneralized gradient approximations
dc.subjectStrain effect
dc.subjectDensity functional theory
dc.titleEffect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1016/j.tsf.2019.137783
dc.relation.citationvolume696
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationBikerouin, M., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco, Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Balli, M., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco; Farkous, M., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco, Laboratoire des Systèmes Electriques et Télécommunications, Université Ibn Tofail, Kenitra, Morocco; El-Yadri, M., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Dujardin, F., LCP-A2MC, Université de Lorraine, Metz, France; Abdellah, A.B., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco, Laboratory of Engineering, Innovation and Management of Industrial Systems (LEIMIS), FST of Tangier, Abdelmalek Essaadi University, Morocco; Feddi, E., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos, Mexico
dc.relation.referencesZunger, A., Jaffe, J.E., Structural origin of optical bowing in semiconductor alloys (1983) Phys. Rev. Lett., 51, pp. 662-665
dc.relation.referencesAlonso, M.I., Wakita, K., Pascual, J., Garriga, M., Yamamoto, N., Optical functions and electronic structure of cuinse2, cugase2, cuins2, and cugas2 (2001) Phys. Rev. B, 63, p. 075203
dc.relation.referencesParlak, C., Eryi?it, R., Ab initio volume-dependent elastic and lattice dynamical properties of chalcopyrite cugase2 (2006) Phys. Rev. B, 73, p. 245217
dc.relation.referencesLiu, F., Yang, J., Zhou, J., Lai, Y., Jia, M., Li, J., Liu, Y., One-step electrodeposition of cugase2 thin films (2012) Thin Sol. Films, 520, pp. 2781-2784
dc.relation.referencesShay, J., Wernick, J., Ternary Chalcopyrite Crystals: Growth, Electronic Structure, and Applications (1975), Elsevier Oxford
dc.relation.referencesReshak, A.H., Linear, nonlinear optical properties and birefringence of aggax2 (x= s, se, te) compounds (2005) Physica B, 369, pp. 243-253
dc.relation.referencesKumar, V., Tripathy, S.K., Jha, V., Second order nonlinear optical properties of aIbIIIc2 VI chalcopyrite semiconductors (2012) Appl. Phys. Lett., 101, p. 192105
dc.relation.referencesSamanta, L., Ghosh, D., Bhar, G., Optical nonlinearity, band-structure parameters, and refractive indices of some mixed chalcopyrite crystals (1986) Phys. Rev. B, 33, p. 4145
dc.relation.referencesTinoco, T., Quintero, M., Rincón, C., Variation of the energy gap with composition in aIbIIIc2 VI chalcopyrite-structure alloys (1991) Phys. Rev. B, 44, p. 1613
dc.relation.referencesWei, S.-H., Zunger, A., Band offsets and optical bowings of chalcopyrites and zn-based II-VI alloys (1995) J. Appl. Phys., 78, pp. 3846-3856
dc.relation.referencesWu, J., Hirai, Y., Kato, T., Sugimoto, H., Bermudez, V., New world record efficiency up to 22.9% for cu(in,ga)(se,s)2 thin-film solar cells (2018) 7th World Conference on Photovoltaic Energy Conversion (WCPEC-7), pp. 10-15
dc.relation.referencesGreen, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W., Solar cell efficiency tables (version 53) (2019) Prog Photovolt Res Appl., 27, pp. 3-12
dc.relation.referencesSalomé, P.M., Fjällström, V., Szaniawski, P., Leitão, J.P., Hultqvist, A., Fernandes, P.A., Teixeira, J.P., Edoff, M., A comparison between thin film solar cells made from co-evaporated cuin(1-x)ga(x)se2 using a one-stage process versus a three-stage process (2015) Prog. Photovolt. Res. Appl., 23, pp. 470-478
dc.relation.referencesChiril?, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Tiwari, A.N., Highly efficient cu(in,ga)se2 solar cells grown on flexible polymer films (2011) Nat. Mater., 10 (11), p. 857
dc.relation.referencesChopra, K., Paulson, P., Dutta, V., Thin-film solar cells: an overview (2004) Prog. Photovolt. Res. Appl., 12, pp. 69-92
dc.relation.referencesHarvey, T.B., Mori, I., Stolle, C.J., Bogart, T.D., Ostrowski, D.P., Glaz, M.S., Du, J., Korgel, B.A., Copper indium gallium selenide (cigs) photovoltaic devices made using multistep selenization of nanocrystal films (2013) ACS Appl. Mater. Interfaces, 5, pp. 9134-9140
dc.relation.referencesOjajarvi, J., Rasanen, E., Sadewasser, S., Lehmann, S., Wagner, P., Lux-Steiner, M.C., Tetrahedral chalcopyrite quantum dots for solar-cell applications (2011) Appl. Phys. Lett., 99, p. 111907
dc.relation.referencesStolle, C.J., Harvey, T.B., Pernik, D.R., Hibbert, J.I., Du, J., Rhee, D.J., Akhavan, V.A., Korgel, B.A., Multiexciton solar cells of cuinse2 nanocrystals (2014) J. Phys. Chem. Lett., 5, pp. 304-309
dc.relation.referencesPanthani, M.G., Stolle, C.J., Reid, D.K., Rhee, D.J., Harvey, T.B., Akhavan, V.A., Yu, Y., Korgel, B.A., Cuinse2 quantum dot solar cells with high open-circuit voltage (2013) J. Phys. Chem. Lett., 4, pp. 2030-2034
dc.relation.referencesXin, B., Wu, Y., Zhang, N., Yu, H., Feng, W., High performance UV photodetector based on 2d non-layered cugas2 nanosheets (2019) Semicond. Sci. Technol., 34, p. 055007
dc.relation.referencesSoni, A., Dashora, A., Gupta, V., Arora, C.M., Rérat, M., Ahuja, B.L., Pandey, R., Electronic and optical modeling of solar cell compounds cugase2 and cuinse2 (2011) J. Electron. Mater., 40, pp. 2197-2208
dc.relation.referencesNayebi, P., Mirabbaszadeh, K., Shamshirsaz, M., Density functional theory of structural, electronic and optical properties of cuXY2 (x=in, ga and y=s,se) chacopyrite semiconductors (2013) Physica B, 416, pp. 55-63
dc.relation.referencesXue, H.-T., Tang, F.-L., Lu, W.-J., Feng, Y.-D., Wang, Z.-M., Wang, Y., First-principles investigation of structural phase transitions and electronic properties of cugase2 up to 100?GPa (2013) Comput. Mater. Sci., 67, pp. 21-26
dc.relation.referencesPluengphon, P., Bovornratanaraks, T., Phase stability and elastic properties of cugase2 under high pressure (2015) Solid State Commun., 218, pp. 1-5
dc.relation.referencesZhao, Z., Zhou, D., Yi, J., Analysis of the electronic structures of 3d transition metals doped cugas2 based on DFT calculations (2014) J. Semicond., 35, p. 013002
dc.relation.referencesSchwarz, K., Blaha, P., Madsen, G.K., Electronic structure calculations of solids using the wien2k package for material sciences (2002) Comput. Phys. Commun., 147, pp. 71-76
dc.relation.referencesBlaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.D., Wien2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (revised edition) (2018), Vienna University of Technology, Austria
dc.relation.referencesPerdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces (2008) Phys. Rev. Lett., 100, p. 136406
dc.relation.referencesTran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential (2009) Phys. Rev. Lett., 102, p. 226401
dc.relation.referencesGeilhufe, M., Nayak, S.K., Thomas, S., Däne, M., Tripathi, G.S., Entel, P., Hergert, W., Ernst, A., Effect of hydrostatic pressure and uniaxial strain on the electronic properties of pb1?xsnxte (2015) Phys. Rev. B, 92, p. 235203
dc.relation.referencesSakata, K., Magyari-Köpe, B., Gupta, S., Nishi, Y., Blom, A., Deák, P., The effects of uniaxial and biaxial strain on the electronic structure of germanium (2016) Comput. Mater. Sci., 112 (A), pp. 263-268
dc.relation.referencesDelin, A., Ravindran, P., Eriksson, O., Wills, J.M., Full-potential optical calculations of lead chalcogenides (1998) Int. J. Quantum Chem., 69, pp. 349-358
dc.relation.referencesGarbato, L., Ledda, F., Rucci, A., Structural distortions and polymorphic behaviour in ABC2 and AB2c4 tetrahedral compounds (1987) Prog. Cryst. Growth Charact., 15, pp. 1-41
dc.relation.referencesAbrahams, S.C., Bernstein, J.L., Piezoelectric nonlinear optic cugase2 and cdgeas2: crystal structure, chalcopyrite microhardness, and sublattice distortion (1974) J. Chem. Phys., 61, pp. 1140-1146
dc.relation.referencesChen, S., Gong, X.G., Wei, S.H., Band-structure anomalies of the chalcopyrite semiconductors cugax2 versus aggax2 (x=s and se) and their alloys (2007) Phys. Rev. B, 75, p. 205209
dc.relation.referencesBelhadj, M., Tadjer, A., Abbar, B., Bousahla, Z., Bouhafs, B., Aourag, H., Structural, electronic and optical calculations of cu(in,ga)se2 ternary chalcopyrites (2004) Phys. Status Solidi B, 241, pp. 2516-2528
dc.relation.referencesSpiess, H.W., Haeberlen, U., Brandt, G., Räuber, A., Schneider, J., Nuclear magnetic resonance in ib-III-VI2 semiconductors (1974) Phys. Status Solidi B, 62, pp. 183-192
dc.relation.referencesGonzalez, J., Rincón, C., Optical absorption and phase transitions in cu-III-VI2 compounds semiconductors at high pressure (1990) J. Phys. Chem. Solids, 51, pp. 1093-1097
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem