dc.creator | Torres A.M. | |
dc.creator | Correa J.D. | |
dc.date | 2021 | |
dc.date.accessioned | 2021-02-05T14:57:32Z | |
dc.date.available | 2021-02-05T14:57:32Z | |
dc.identifier.issn | 19764251 | |
dc.identifier.uri | http://hdl.handle.net/11407/5885 | |
dc.description | Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099470838&doi=10.1007%2fs42823-020-00221-2&partnerID=40&md5=7a71ee96ddee0ac2eb4124d65f36a3b2 | |
dc.source | Carbon Letters | |
dc.subject | Carbon nanotubes | spa |
dc.subject | DFT | spa |
dc.subject | Furan | spa |
dc.subject | van der Waals | spa |
dc.title | First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1007/s42823-020-00221-2 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Torres, A.M., Grupo de Investigación en Biomateriales (BIOMAT), Universidad de Antioquia, Medellín, Colombia | |
dc.affiliation | Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China (2013) Sci Total Environ, 456, p. 127 | |
dc.relation.references | Probert, C.S., Ahmed, F., Khalid, T., Johnson, E., Smith, S., Ratcliffe, N., Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases (2009) J Gastrointest Liver Dis, 18 (3), p. 337 | |
dc.relation.references | Saalberg, Y., Wolff, M., VOC breath biomarkers in lung cancer (2016) Clin Chim Acta, 459, p. 5 | |
dc.relation.references | Castro, M., Kumar, B., Feller, J.F., Haddi, Z., Amari, A., Bouchikhi, B., Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors (2011) Sens Actuators, B, 159 (1), p. 213 | |
dc.relation.references | Hafaiedh, I., El Euch, W., Clement, P., Llobet, E., Abdelghani, A., Multi-walled carbon nanotubes for volatile organic compound detection (2013) Sens Actuators, B, 182, p. 344 | |
dc.relation.references | Mochalski, P., Sponring, A., King, J., Unterkofler, K., Troppmair, J., Amann, A., Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro (2013) Cancer Cell Int, 13 (1), p. 72 | |
dc.relation.references | Jia, Z., Patra, A., Kutty, V.K., Venkatesan, T., Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer (2019) Metabolites, 9 (3), p. 52 | |
dc.relation.references | Perez Locas, C., Yaylayan, V.A., Origin and Mechanistic Pathways of Formation of the Parent Furan–A Food Toxicant (2004) J Agric Food Chem, 52 (22), p. 6830 | |
dc.relation.references | Kettlitz, B., Scholz, G., Theurillat, V., Cselovszky, J., Buck, N., Hagan, S., Mavromichali, E., Stadler, R., Furan and methylfurans in foods: An update on occurrence, mitigation, and risk assessment (2019) Compr Rev Food Sci Food Saf, 18 (3), p. 738 | |
dc.relation.references | Khalid, T., Aggio, R., White, P., Costello, B.D.L., Persad, R., Al-Kateb, H., Jones, P., Ratcliffe, N., Urinary volatile organic compounds for the detection of prostate cancer (2015) Plos One, 10, p. 11 | |
dc.relation.references | Lima, A.R., Pinto, J., Azevedo, A.I., Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine (2019) Br J Cancer, 121, p. 857 | |
dc.relation.references | Hafaiedh, I., Helali, S., Cherif, K., Abdelghani, A., Tournier, G., (2008) Mater Sci Eng C. | |
dc.relation.references | Zhao, J., Park, H., Han, J., Lu, J.P., (2004) J Phys Chem B, 108 (14), p. 4227. , COI: 1:CAS:528:DC%2BD2cXhvFCru7s%3D | |
dc.relation.references | Tang, S., Chen, W., Zhang, H., Song, Z., Li, Y., Wang, Y., (2020) Front Chem, 8, p. 174. , COI: 1:CAS:528:DC%2BB3cXhvFGisbfE | |
dc.relation.references | Jana, D., Sun, C.L., Chen, L., Chen, K., (2013) Prog Mater Sci, 58, p. 565. , COI: 1:CAS:528:DC%2BC3sXltVegtLc%3D | |
dc.relation.references | Gowri Sankar, P.A., Udhayakumar, K., (2013) Electronic properties of boron and silicon doped (10, 0) zigzag single-walled carbon nanotube upon gas molecular adsorption: a DFT comparative study, , https://doi.org/10.1155/2013/293936 | |
dc.relation.references | Li, W., Lu, X.M., Li, G.Q., Ma, J.J., Zeng, P.Y., Chen, J.F., Pan, Z.L., He, Q.Y., (2016) Appl Surf Sci, 364, p. 560. , COI: 1:CAS:528:DC%2BC2MXitVyltb7K | |
dc.relation.references | Luna, C., Bechthold, P., Brizuela, G., Juan, A., Pistonesi, C., (2018) Appl Surf Sci, 459, p. 201. , COI: 1:CAS:528:DC%2BC1cXhsVKitLnI | |
dc.relation.references | Wan, Q., Xu, Y., Zhang, X., Adsorption properties of typical lung cancer breath gases on Ni-SWCNTs through density functional theory (2017) J Sens, , https://doi.org/10.1155/2017/7974545 | |
dc.relation.references | Aasi, A., Aghaei, S.M., Panchapakesan, B., (2020) Nanotechnology, 31 (41), p. 415707. , COI: 1:CAS:528:DC%2BB3cXitVSntrfP | |
dc.relation.references | Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J Phys Condens Matter, 14 (11), p. 2745 | |
dc.relation.references | Román-Pérez, G., Soler, J.M., (2009) Phys Rev Lett, 103 (9), p. 096102 | |
dc.relation.references | Berland, K., Hyldgaard, P., (2014) Phys Rev B Condens Matter Mater Phys, 89 (3), p. 1 | |
dc.relation.references | Cooper, V.R., (2010) Phys Rev B Condensed Matter Mater Phys, 81 (16), p. 1 | |
dc.relation.references | Girifalco, L., Lad, R., (1956) J Chem Phys, 25 (4), p. 693. , COI: 1:CAS:528:DyaG2sXhtFagsg%3D%3D | |
dc.relation.references | Mata, F., Martin, M.C., Sørensen, G.O., (1978) J Mol Struct, 48 (2), p. 157. , COI: 1:CAS:528:DyaE1cXltVOrt7s%3D | |
dc.relation.references | Igami, M., Nakanishi, T., Ando, T., (1999) J Phys Soc Jpn, 68 (3), p. 716. , COI: 1:CAS:528:DyaK1MXisVersb0%3D | |
dc.relation.references | Ma, Y., Lehtinen, P., Foster, A.S., Nieminen, R.M., (2004) New J Phys, 6 (1), p. 68 | |
dc.relation.references | Orellana, W., Fuentealba, P., (2006) Surf Sci, 600 (18), p. 4305. , COI: 1:CAS:528:DC%2BD28XhtVagsLjM | |
dc.relation.references | Mu, J., Ma, Y., Liu, H., Zhang, T., Zhuo, S., (2019) J Chem Phys, 150 (2), p. 024701 | |
dc.relation.references | Liu, L.V., Tian, W.Q., Wang, Y.A., (2009) Int J Quantum Chem, 109 (14), p. 3441. , COI: 1:CAS:528:DC%2BD1MXhtVGqs7rI | |
dc.relation.references | Zanolli, Z., Charlier, J.C., (2010) Phys Rev B, 81 (16), p. 165406 | |
dc.relation.references | Ali, M., Amrane, N., Tit, N., (2020) Results Phys, 16, p. 102907 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |