REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study

Thumbnail
Share this
Author
Forgionny A.
Acelas N.Y.
Ocampo-Pérez R.
Padilla-Ortega E.
Leyva-Ramos R.
Flórez E.
TY - GEN T1 - Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study AU - Forgionny A. AU - Acelas N.Y. AU - Ocampo-Pérez R. AU - Padilla-Ortega E. AU - Leyva-Ramos R. AU - Flórez E. UR - http://hdl.handle.net/11407/5901 PB - Springer Science and Business Media Deutschland GmbH AB - In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature. ER - @misc{11407_5901, author = {Forgionny A. and Acelas N.Y. and Ocampo-Pérez R. and Padilla-Ortega E. and Leyva-Ramos R. and Flórez E.}, title = {Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study}, year = {}, abstract = {In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.}, url = {http://hdl.handle.net/11407/5901} }RT Generic T1 Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study A1 Forgionny A. A1 Acelas N.Y. A1 Ocampo-Pérez R. A1 Padilla-Ortega E. A1 Leyva-Ramos R. A1 Flórez E. LK http://hdl.handle.net/11407/5901 PB Springer Science and Business Media Deutschland GmbH AB In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
URI
http://hdl.handle.net/11407/5901
Collections
  • Indexados Scopus [1069]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 340 5555 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com