REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study

Thumbnail
Share this
Author
Jimenez-Orozco C.
Flórez E.
Viñes F.
Rodriguez J.A.
Illas F.
TY - GEN T1 - Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study AU - Jimenez-Orozco C. AU - Flórez E. AU - Viñes F. AU - Rodriguez J.A. AU - Illas F. UR - http://hdl.handle.net/11407/5933 PB - American Chemical Society AB - The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society. ER - @misc{11407_5933, author = {Jimenez-Orozco C. and Flórez E. and Viñes F. and Rodriguez J.A. and Illas F.}, title = {Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study}, year = {}, abstract = {The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.}, url = {http://hdl.handle.net/11407/5933} }RT Generic T1 Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study A1 Jimenez-Orozco C. A1 Flórez E. A1 Viñes F. A1 Rodriguez J.A. A1 Illas F. LK http://hdl.handle.net/11407/5933 PB American Chemical Society AB The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.
URI
http://hdl.handle.net/11407/5933
Collections
  • Indexados Scopus [1069]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 340 5555 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com