Show simple item record

dc.creatorJimenez-Orozco C.
dc.creatorFlórez E.
dc.creatorViñes F.
dc.creatorRodriguez J.A.
dc.creatorIllas F.
dc.descriptionThe molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.
dc.publisherAmerican Chemical Society
dc.sourceACS Catalysis
dc.subjectdensity functional calculationsspa
dc.titleCritical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
dc.subject.keywordAliphatic compoundseng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordEnergy barrierseng
dc.subject.keywordReaction intermediateseng
dc.subject.keywordReaction rateseng
dc.subject.keywordSurface reactionseng
dc.subject.keywordAb initio thermodynamicseng
dc.subject.keywordAdsorption energieseng
dc.subject.keywordElementary reactioneng
dc.subject.keywordHydrogenation reactionseng
dc.subject.keywordMolecular mechanismeng
dc.subject.keywordPeriodic density functional theoryeng
dc.subject.keywordRate-limiting stepseng
dc.subject.keywordSurface intermediateseng
dc.subject.keywordActivation energyeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationJimenez-Orozco, C., Grupo de Materiales con Impacto (Matandmpac), Facultad de Ciencias Básicas, Universidad de Medellĺn, Matandmpac, Carrera 87 No 30-65, Medellín, Colombia
dc.affiliationFlórez, E., Grupo de Materiales con Impacto (Matandmpac), Facultad de Ciencias Básicas, Universidad de Medellĺn, Matandmpac, Carrera 87 No 30-65, Medellín, Colombia
dc.affiliationViñes, F., Departament de Ciència de Materials i Quĺmica Fĺsica, Institut de Quĺmica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.affiliationIllas, F., Departament de Ciència de Materials i Quĺmica Fĺsica, Institut de Quĺmica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spain
dc.relation.referencesWilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487
dc.relation.referencesDhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228
dc.relation.referencesHwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesLevy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesOyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, p. 1. , 1 st ed. Blackie academic & professional: Glasgow, U.K
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesFrauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70
dc.relation.referencesArdakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19
dc.relation.referencesLin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Ma, D., Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts (2017) Nature, 544, pp. 80-83
dc.relation.referencesRodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
dc.relation.referencesYao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Ma, D., Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction (2017) Science, 357, pp. 389-393
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32
dc.relation.referencesPrats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions (2019) Chem. Commun., 55, pp. 12797-12800
dc.relation.referencesViñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A Systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-Metals Carbides (2005) J. Chem. Phys., 122, p. 174709
dc.relation.referencesQuesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916
dc.relation.referencesCremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation (1996) J. Am. Chem. Soc., 118, pp. 2942-2949
dc.relation.referencesRekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., Microkinetic Analysis of Diverse Experimental Data for Ethylene Hydrogenation on Platinum (1992) J. Phys. Chem., 96, pp. 1880-1888
dc.relation.referencesCortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic Study of Ethylene Hydrogenation (1991) J. Catal., 127, pp. 342-353
dc.relation.referencesGodbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of Chemisorbed Ethylene on Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces (1986) Surf. Sci., 167, pp. 150-166
dc.relation.referencesMei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15
dc.relation.referencesMolero, H., Stacchiola, D., Tysoe, W.T., The Kinetics of Ethylene Hydrogenation Catalyzed by Metallic Palladium (2005) Catal. Lett., 101, pp. 145-149
dc.relation.referencesStacchiola, D., Tysoe, W.T., The Effect of Subsurface Hydrogen on the Adsorption of Ethylene on Pd(1 1 1) (2003) Surf. Sci., 540, pp. L600-L604
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342
dc.relation.referencesKojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalysis by Transition Metal Carbides: IV. Mechanism of Ethylene Hydrogenation and the Nature of Active Sites on Tantalum Monocarbide (1982) J. Catal., 73, pp. 128-135
dc.relation.referencesCui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., Zhang, L., Shi, J., In-Situ Carbonization Synthesis and Ethylene Hydrogenation Activity of Ordered Mesoporous Tungsten Carbide (2011) Int. J. Hydrogen Energy, 36, pp. 10513-10521
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540
dc.relation.referencesZaera, F., Somorjai, G.A., Hydrogenation of Ethylene over Platinum (111) Single-Crystal Surfaces (1984) J. Am. Chem. Soc., 106, pp. 2288-2293
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003
dc.relation.referencesZaera, F., Key Unanswered Questions about the Mechanism of Olefin Hydrogenation Catalysis by Transition-Metal Surfaces: A Surface-Science Perspective (2013) Phys. Chem. Chem. Phys., 15, pp. 11988-12003
dc.relation.referencesPiñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020
dc.relation.referencesReuter, K., Scheffler, M., Composition, Structure, and Stability of RuO2(110) as a Function of Oxygen Pressure (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 65, p. 035406
dc.relation.referencesReuter, K., Scheffler, M., Composition and Structure of the RuO2(110) Surface in an O2 and CO Environment: Implications for the Catalytic Formation of CO2 (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 68, p. 045407
dc.relation.referencesKunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144
dc.relation.referencesRodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., Illas, F., Interaction of Oxygen with ZrC(001) and VC(001): Photoemission and First-Principles Studies (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 075427
dc.relation.referencesViñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst Size Matters: Tuning the Molecular Mechanism of the Water-Gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112
dc.relation.referencesKresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesPoliti, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104
dc.relation.referencesBlöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192
dc.relation.referencesHjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment - a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002
dc.relation.referencesHenkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904
dc.relation.referencesChorkendorff, I., Niemantsverdriet, J., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim
dc.relation.referencesNørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley & Sons, Inc
dc.relation.referencesPlata, J.J., Collico, V., Márquez, A.M., Sanz, J.F., Analysis of the Origin of Lateral Interactions in the Adsorption of Small Organic Molecules on Oxide Surfaces (2013) Theor. Chem. Acc., 132, p. 1311
dc.relation.referencesHeard, C.J., Siahrostami, S., Grönbeck, H., Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces (2016) J. Phys. Chem. C, 120, pp. 995-1003
dc.relation.referencesHeard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6, pp. 3277-3286
dc.relation.referencesJørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549
dc.relation.referencesShi, Q., Sun, R., Adsorption Manners of Hydrogen on Pt(100), (110) and (111) Surfaces at High Coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49
dc.relation.referencesVasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379
dc.relation.referencesSabbe, M.K., Canduela-Rodriguez, G., Reyniers, M.-F., Marin, G.B., DFT-Based Modeling of Benzene Hydrogenation on Pt at Industrially Relevant Coverage (2015) J. Catal., 330, pp. 406-422
dc.relation.referencesMeemken, F., Baiker, A., Dupré, J., Hungerbühler, K., Asymmetric Catalysis on Cinchonidine-Modified Pt/Al2O3: Kinetics and Isotope Effect in the Hydrogenation of Trifluoroacetophenone (2014) ACS Catal., 4, pp. 344-354

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record