Mostrar el registro sencillo del ítem

dc.creatorGomez A.
dc.creatorQuintero O.L.
dc.creatorLopez-Celani N.
dc.creatorVilla L.F.
dc.date2020
dc.date.accessioned2021-02-05T14:58:13Z
dc.date.available2021-02-05T14:58:13Z
dc.identifier.isbn9781728119908
dc.identifier.issn1557170X
dc.identifier.urihttp://hdl.handle.net/11407/5950
dc.descriptionThe EEG has showed that contains relevant information about recognition of emotional states. It is important to analyze the EEG signals to understand the emotional states not only from a time series approach but also determining the importance of the generating process of these signals, the location of electrodes and the relationship between the EEG signals. From the EEG signals of each emotional state, a functional connectivity measurement was used to construct adjacency matrices: lagged phase synchronization (LPS), averaging adjacency matrices we built a prototype network for each emotion. Based on these networks, we extracted a set node features seeking to understand their behavior and the relationship between them. We found through the strength and degree, the group of representative electrodes for each emotional state, finding differences from intensity of measurement and the spatial location of these electrodes. In addition, analyzing the cluster coefficient, degree, and strength, we find differences between the networks from the spatial patterns associated with the electrodes with the highest coefficient. This analysis can also gain evidence from the connectivity elements shared between emotional states, allowing to cluster emotions and concluding about the relationship of emotions from EEG perspective. © 2020 IEEE.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091012600&doi=10.1109%2fEMBC44109.2020.9175935&partnerID=40&md5=ae27cc7bc66d990e79ba8002aea434b9
dc.sourceProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
dc.titleEmotional Networked maps from EEG signals
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemasspa
dc.identifier.doi10.1109/EMBC44109.2020.9175935
dc.subject.keywordGraph structureseng
dc.subject.keywordAdjacency matriceseng
dc.subject.keywordCluster coefficientseng
dc.subject.keywordEEG signalseng
dc.subject.keywordEmotional stateeng
dc.subject.keywordFunctional connectivityeng
dc.subject.keywordLagged phaseeng
dc.subject.keywordSpatial locationeng
dc.subject.keywordSpatial patternseng
dc.subject.keywordElectrodeseng
dc.relation.citationvolume2020-July
dc.relation.citationstartpage34
dc.relation.citationendpage37
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationGomez, A., Universidad Eafit, Mathematical Modelling, Medellín, Colombia
dc.affiliationQuintero, O.L., Universidad Eafit, Mathematical Modelling, Medellín, Colombia
dc.affiliationLopez-Celani, N., Universidad Nacional de San Juan, Gabinete de Tecnologia Medica-CONICET, San Juan, Argentina
dc.affiliationVilla, L.F., Universidad de Medellín, Arkadius, Medellín, Colombia
dc.relation.referencesBekkedal, V.M.Y., Rossi, J., Panksepp, J., Human brain EEG indices of emotions: Delineating responses to affective vocalizations by measuring frontal theta event-related synchronization (2011) Neuroscience and Biobehavioral Reviews, 35 (9), pp. 1959-1970
dc.relation.referencesCabanac, M., What is emotion (2002) Behavioural Processes, 60 (2), pp. 69-83
dc.relation.referencesCanuet, L., Ishii, R., Pascual-Marqui, R., Iwase, M., Kurimoto, R., Aoki, Y., Ikeda, S., Takeda, M., Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy (2011) PLoS ONE, 6 (11)
dc.relation.referencesChen, M., Han, J., Guo, L., Wang, J., Patras, I., Identifying valence and arousal levels via connectivity between EEG channels (2015) 2015 International Conference on Affective Computing and Intelligent Interaction, ACII, pp. 63-69
dc.relation.referencesDalgleish, T., Dunn, B.D., Mobbs, D., Affective neuroscience: Past, present, and future (2009) Emotion Review, 1 (4), pp. 355-368
dc.relation.referencesFusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., Benedetti, F., Politi, P., Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies (2009) Journal of Psychiatry and Neuroscience, 34 (6), pp. 418-432
dc.relation.referencesGómez, A., Quintero, L., López, N., Castro, J., An approach to emotion recognition in single-channel EEG signals: A mother child interaction (2016) Journal of Physics: Conference Series, 705 (1), p. 12051
dc.relation.referencesGómez, A., Quintero, L., López, N., Castro, J., Villa, L., Mejía, G., An approach to emotion recognition in single-channel EEG signals using stationary wavelet transform (2016) IFMBE Proceedings, Volume Claib, pp. 654-657
dc.relation.referencesGonuguntla, V., Mallipeddi, R., Veluvolu, K.C., Identification of emotion associated brain functional network with phase locking (2016) 2016 38Th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), pp. 4515-4518
dc.relation.referencesHamann, S., Mapping discrete and dimensional emotions onto the brain: Controversies and consensus (2012) Trends in Cognitive Sciences, 16 (9), p. 458
dc.relation.referencesKlem, G.H., Lüders, H.O., Jasper, H.H., Elger, C., The ten-twenty electrode system of the international federation (1999) The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52 (2), pp. 3-6. , may
dc.relation.referencesKragel, P.A., LaBar, K.S., Decoding the nature of emotion in the brain (2016) Trends in Cognitive Sciences, 20, pp. 1-12
dc.relation.referencesNewman, M.E.J., The structure and function of complex networks (2003) Society for Industrial and Applied Mathematics, 45 (2), pp. 167-256
dc.relation.referencesRubinov, M., Sporns, O., Complex network measures of brain connectivity: Uses and interpretations (2010) NeuroImage, 52 (3), pp. 1059-1069
dc.relation.referencesScherer, K.R., What are emotions and how can they be measured (2005) Social Science Information, 44 (4), pp. 695-729
dc.relation.referencesSoleymani, M., Lichtenauer, J., Pun, T., Pantic, M., A multimodal database for affect recognition and implicit tagging (2012) IEEE Transactions on Affective Computing, 3 (1), pp. 42-55
dc.relation.referencesTracy, J.L., Randles, D., Four models of basic emotions: A review of ekman and cordaro, izard, levenson, and panksepp and watt (2011) Emotion Review, 3 (4), pp. 397-405
dc.relation.referencesWirsich, J., Ridley, B., Besson, P., Jirsa, V., Bénar, C., Philippe Ranjeva, J., Guye, M., Complementary contributions of concurrent EEG and fmri connectivity for predicting structural connectivity (2017) NeuroImage, 161, pp. 251-260. , (August)
dc.relation.referencesZheng, W., Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis (2017) IEEE Transactions on Cognitive and Developmental Systems, 9 (3), pp. 281-290
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem